日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)求函數(shù)上的單調(diào)遞增區(qū)間;

          2)將函數(shù)的圖象向左平移個(gè)單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無窮多個(gè)互不相同的整數(shù),使得.

          【答案】1)單調(diào)遞增區(qū)間為;(2)見解析.

          【解析】

          1)利用二倍角的降冪公式以及輔助角公式可將函數(shù)的解析式化簡(jiǎn)為,然后求出函數(shù)上的單調(diào)遞增區(qū)間,與定義域取交集可得出答案;

          2)利用三角函數(shù)圖象變換得出,解出不等式的解集,可得知對(duì)中的任意一個(gè),每個(gè)區(qū)間內(nèi)至少有一個(gè)整數(shù)使得,從而得出結(jié)論.

          1.

          ,解得

          所以,函數(shù)上的單調(diào)遞增區(qū)間為

          ,因此,函數(shù)上的單調(diào)遞增區(qū)間為;

          (2)將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,

          再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,

          ,

          對(duì)于中的任意一個(gè),區(qū)間長度始終為,大于,

          每個(gè)區(qū)間至少含有一個(gè)整數(shù),

          因此,存在無窮多個(gè)互不相同的整數(shù),使得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

          1)求曲線C的極坐標(biāo)方程;

          2)過點(diǎn),傾斜角為的直線l與曲線C相交于MN兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之和為

          1)求點(diǎn)的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;

          2)(理)記(1)得到的軌跡為曲線,問曲線上關(guān)于點(diǎn)對(duì)稱的不同點(diǎn)有幾對(duì)?請(qǐng)說明理由.

          3)(文)記(1)得到的軌跡為曲線,若曲線上恰有三對(duì)不同的點(diǎn)關(guān)于點(diǎn)對(duì)稱,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí)港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)

          (1)試用含有的代數(shù)式表示;

          (2)要使得所需經(jīng)費(fèi)最少,求的值,并求出此時(shí)的費(fèi)用.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列,對(duì)任意都有,(其中k、b、p是常數(shù)).

          1)當(dāng),,時(shí),求

          2)當(dāng),時(shí),若,求數(shù)列的通項(xiàng)公式;

          3)若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是封閉數(shù)列.當(dāng),,時(shí),設(shè)是數(shù)列的前n項(xiàng)和,,試問:是否存在這樣的封閉數(shù)列,使得對(duì)任意,都有,且.若存在,求數(shù)列的首項(xiàng)的所有取值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐S-ABCD的底面為正方形,,ACBD交于EM,N分別為SD,SA的中點(diǎn),.

          1)求證:平面平面SBD

          2)求直線BD與平面CMN所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門科目中自選門參加考試(),每門科目滿分均為.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查,其中,女生抽取.

          1)求的值;

          2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的物理地理兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的一個(gè)不完整的列聯(lián)表,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

          選擇物理

          選擇地理

          總計(jì)

          男生

          女生

          總計(jì)

          3)在抽取到的名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設(shè)這人中選擇物理的人數(shù)為,求的分布列及期望.附:,

          0.05

          0.01

          0.005

          0.001

          3.841

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,曲線由兩個(gè)橢圓和橢圓組成,當(dāng)成等比數(shù)列時(shí),稱曲線貓眼曲線”.

          1)若貓眼曲線過點(diǎn),且的公比為,求貓眼曲線的方程;

          2)對(duì)于題(1)中的求貓眼曲線,任作斜率為且不過原點(diǎn)的直線與該曲線相交,交橢圓所得弦的中點(diǎn)為M,交橢圓所得弦的中點(diǎn)為N,求證:為與無關(guān)的定值;

          3)若斜率為的直線為橢圓的切線,且交橢圓于點(diǎn),為橢圓上的任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段上的點(diǎn),則與平面平行的直線有(

          A.0B.1C.2D.無數(shù)條

          查看答案和解析>>

          同步練習(xí)冊(cè)答案