日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)).

          1求函數(shù)的單調(diào)區(qū)間;

          2函數(shù)在定義域內(nèi)存在零點(diǎn),求的取值范圍

          3,當(dāng)時(shí),不等式恒成立,求的取值范圍

          【答案】1當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為2;3

          【解析】

          試題分析:1先求函數(shù)的導(dǎo)數(shù),分求函數(shù)的單調(diào)區(qū)間;2的零點(diǎn)問題轉(zhuǎn)化

          ,的問題所以設(shè)函數(shù),求函數(shù)的導(dǎo)數(shù)在定義域內(nèi)分析函數(shù)的單調(diào)區(qū)間,根據(jù)單調(diào)性和極值點(diǎn)得到函數(shù)的最小值,然后再根據(jù)函數(shù)的變化速度分析函數(shù)沒有最大值趨于正無窮大;32知,當(dāng)時(shí),,即,先分析法證明:根據(jù),將問題轉(zhuǎn)化為證明,然后結(jié)合1所討論的單調(diào)區(qū)間,求得滿足條件的的取值范圍

          試題解析:1,則

          當(dāng)時(shí),對,有,所以函數(shù)在區(qū)間上單調(diào)遞增;

          當(dāng)時(shí),由,得;由,得,

          此時(shí)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

          綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為;

          當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

          2函數(shù)的定義域?yàn)?/span>,

          ,得

          ,則,

          由于,,可知當(dāng),;當(dāng)時(shí),,

          故函數(shù)上單調(diào)遞減,在上單調(diào)遞增,故

          又由1知當(dāng)時(shí),對,有,即,

          隨著的增長,的增長速度越來越快,會(huì)超過并遠(yuǎn)遠(yuǎn)大于的增長速度,而的增長速度則會(huì)越來越慢則當(dāng)無限接近于0時(shí),趨向于正無窮大.)

          當(dāng)時(shí),函數(shù)有零點(diǎn);

          32知,當(dāng)時(shí),,即

          先分析法證明:

          要證只需證明即證

          設(shè),則

          所以時(shí)函數(shù)單調(diào)遞增,所以,則

          當(dāng)時(shí),由1知,函數(shù)單調(diào)遞增,則恒成立;

          當(dāng)時(shí),由1知,函數(shù)單調(diào)遞增,在單調(diào)遞減故當(dāng)時(shí),所以,則不滿足題意,舍去

          綜上,滿足題意的實(shí)數(shù)a的取值范圍為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方形的邊長為1,如圖所示:

          1在正方形內(nèi)任取一點(diǎn),求事件的概率;

          2用芝麻顆粒將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內(nèi),請據(jù)此估計(jì)圓周率的近似值精確到0.001

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30—7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00—8:00之間,則他在離開家之前能拿到報(bào)紙的概率( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>,若存在閉區(qū)間[m,n] D,使得函數(shù)滿足:①[m,n]上是單調(diào)函數(shù);②[m,n]上的值域?yàn)?/span>[2m,2n],則稱區(qū)間[m,n]的“倍值區(qū)間”下列函數(shù)中存在“倍值區(qū)間”的 .(填上所有正確的序號

          ;

          ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果y=fx的定義域?yàn)镽,對于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得fx+a=fx成立,則稱此函數(shù)具有Pa性質(zhì)給出下列命題:

          函數(shù)y=sinx具有Pa性質(zhì);

          若奇函數(shù)y=fx具有P2性質(zhì),且f1=1,則f2015=1;

          若函數(shù)y=fx具有P4性質(zhì),圖象關(guān)于點(diǎn)1,0成中心對稱,且在1,0上單調(diào)遞減,則y=fx2,1上單調(diào)遞減,在1,2上單調(diào)遞增;

          若不恒為零的函數(shù)y=fx同時(shí)具有P0性質(zhì)P3性質(zhì),函數(shù)y=fx是周期函數(shù)

          其中正確的是 寫出所有正確命題的編號).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 上單調(diào)遞增,

          (1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;

          (2)若對于任意的時(shí),不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過點(diǎn),直線軸于,且,為坐標(biāo)原點(diǎn).

          (1)求橢圓的方程;

          (2)設(shè)是橢圓的上頂點(diǎn),過點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),點(diǎn)分別在的圖象上

          1若函數(shù)處的切線恰好與相切,求的值;

          2若點(diǎn)的橫坐標(biāo)均為,記,當(dāng)時(shí),函數(shù)取得極大值,求的范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:

          1直線EG平面BDD1B1;

          2平面EFG平面BDD1B1

          查看答案和解析>>

          同步練習(xí)冊答案