日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在三棱錐各棱所在的6條直線上,互相垂直的最多有兒對?(每兩條組成一對)

          【答案】6

          【解析】

          分三步證明最多有6對互相垂直的直線.

          (1)6對是可以達到的.

          時,由線面垂直的性質(zhì)有,,.

          又由三垂線定理,有,.這就得出6對互相垂直的直線(如圖所示).

          (2)8對是不可能的.

          由于一個三角形的內(nèi)角中最多有一個直角,最少有兩個銳角,所以4個面三角形至少有8個銳角,又由6條直線可以組成對直線,知,互相垂直的直線不超過7對.

          (3)7對是不可能的.

          若不然,有7對垂直直線,因異面直線只有3對,故至少有4對垂直直線是共面的,

          得三棱錐的4個表面都必須是直角三角形(得4對).

          進而3對成異面直線的棱也互相垂直.

          此時,三棱錐的一個頂點在所對面上的射影必是該三角形的垂心,

          而直角三角形的垂心就是直角頂點,所以這個三棱錐的一條側(cè)棱與底面垂直,且垂足就是垂面三角形的頂點(圖中,).

          這時底面三角形直角頂點的對面為銳角三角形(為銳角三角形),與4個面均為直角三角形矛盾.

          綜上得,互相垂直的直線最多有6對.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某造船公司年造船量是20艘,已知造船艘的產(chǎn)值函數(shù)為 (單位:萬元),成本函數(shù)為(單位:萬元),又在經(jīng)濟學中,函數(shù)的邊際函數(shù)定義為.

          (1)求利潤函數(shù)及邊際利潤函數(shù).(提示:利潤=產(chǎn)值-成本)

          (2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

          (3)求邊際利潤函數(shù)的單調(diào)遞減區(qū)間,并說明單調(diào)遞減在本題中的實際意義是什么?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于兩個定義域相同的函數(shù),若存在實數(shù),,使則稱函數(shù)是由“基函數(shù)”生成的.

          1)若生成一個偶函數(shù),求的值;

          2)若是由生成,其中,.的取值范圍;

          3)利用“基函數(shù),”生成一個函數(shù),使得滿足:

          ①是偶函數(shù),②有最小值,求的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】△ABC的內(nèi)角A. B. C的對邊分別為a,b,c,己知=b(c-asinC)。

          (1)求角A的大。

          (2)若b+c=,,求△ABC的面積。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】由直線,,,組成的圖形中,共有同旁內(nèi)角______對.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0.假設(shè)每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,直三棱柱, 的中點.

          1證明 平面;

          2, 求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系.

          (1)求曲線C1和直線C2的極坐標方程;

          (2)若直線C2與曲線C1交于A,B兩點,求

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)求:

          1的單調(diào)區(qū)間

          2的單調(diào)區(qū)間在[0,3]上的最大值與最小值.

          查看答案和解析>>

          同步練習冊答案