日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)討論的單調(diào)性;

          2)若,記的極小值為,證明:.

          【答案】1)當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),遞增區(qū)間為,遞減區(qū)間;當(dāng)時(shí),遞增區(qū)間,遞減區(qū)間; 2)證明見解析.

          【解析】

          1)求得函數(shù)的導(dǎo)數(shù),分類討論,即可求解函數(shù)的單調(diào)區(qū)間;

          2)由(1)可知,取得,把,轉(zhuǎn)化為,

          設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.

          1)由題意,函數(shù),

          ①當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;

          ②當(dāng)時(shí),令,即,解得

          ,即,解得,

          所以函數(shù)單調(diào)遞增,在上單調(diào)遞減;

          ③當(dāng)時(shí),令,即,解得

          ,即,解得,

          所以函數(shù)單調(diào)遞增,在上單調(diào)遞減,

          綜上可得:

          當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)遞增區(qū)間為,遞減區(qū)間;當(dāng)時(shí),函數(shù)遞增區(qū)間,遞減區(qū)間.

          2)由(1)可知,當(dāng)時(shí),單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極小值,

          極小值為,

          要證:,只需證:,只需證:

          ,

          設(shè),則,

          ,即,解得,

          ,即,解得,

          所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          所以當(dāng)時(shí),取得最大值,最大值為

          即當(dāng)時(shí),,即,

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動(dòng)弦過焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn)

          (1)證明:點(diǎn)在定直線上;

          (2)當(dāng)最大時(shí),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

          1)若直線平行于直線,且與曲線只有一個(gè)公共點(diǎn),求直線的方程;

          2)若直線與曲線交于兩點(diǎn),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè) 直線與曲線交于 兩點(diǎn).

          (1)當(dāng)時(shí),求的長度;

          (2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,設(shè)曲線在點(diǎn)處的切線與圓相切.

          1)求函數(shù)的單調(diào)區(qū)間;

          2)求函數(shù)上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中常數(shù)

          1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.

          2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為.當(dāng)時(shí),若內(nèi)恒成立,則稱為函數(shù)類對稱點(diǎn).當(dāng)時(shí),是否存在類對稱點(diǎn)?若存在,請求出一個(gè)類對稱點(diǎn)的橫坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某種氣墊船的最大航速是海里小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比.若船速為海里小時(shí),則船每小時(shí)的燃料費(fèi)用為元,其余費(fèi)用(不論船速為多少)都是每小時(shí)元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

          (1)試把船從甲地到乙地所需的總費(fèi)用,表示為船速(海里小時(shí))的函數(shù),并指出函數(shù)的定義域;

          (2)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需的總費(fèi)用最少?最少費(fèi)用為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

          1)求雙曲線的方程;

          2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

          3)過圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn),中點(diǎn)為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,為了測量AB處島嶼的距離,小海在D處觀測,AB分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀測BC處的正北方向,AC處的北偏西45°方向,則AB兩島嶼的距高為___________海里.

          查看答案和解析>>

          同步練習(xí)冊答案