【題目】已知函數.
若
在
上是單調遞增函數,求
的取值范圍;
設
,當
時,若
,且
,求證:
.
科目:高中數學 來源: 題型:
【題目】下列五個命題不正確的是________.
①若等比數列的公比
,則數列
單調遞增.
②常數列既是等差數列又是等比數列.
③在中,角ABC所對的邊分別為a,b,c,若
則
且
.
④在中,若
,則
為銳角三角形.
⑤等比數列的前n項和為
,對任意正整數m,則
,
,
,…仍成等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知函數,其中
,求函數
的圖象恰好經過第一、二、三象限的概率;
(2)某校早上8:10開始上課,假設該校學生小張與小王在早上7:30~8:00之間到校,且每人到該時間段內到校時刻是等可能的,求兩人到校時刻相差10分鐘以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為
,圓
的方程為
,動圓
與圓
內切且與圓
外切.
(1)求動圓圓心的軌跡
的方程;
(2)已知與
為平面內的兩個定點,過
點的直線
與軌跡
交于
,
兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水量不超過4噸時,每噸為2元;當用水量超4噸時,超過部分每噸為3元.八月甲、乙兩用戶共交水費元,已知甲、乙兩用戶月用水量分別為
噸、
噸.
(1)求關于
的函數;
(2)若甲、乙兩用戶八月共交34元,分別求甲、乙兩用戶八月的用水量和水費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為偶函數,且函數
的圖象的兩相鄰對稱軸間的距離為
.
(1)求的值;
(2)將函數的圖象向右平移
個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數
的圖象,求函數
的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
:
的離心率
,
,
分別為左、右焦點,過
的直線交橢圓
于
,
兩點,且
的周長為8.
(1)求橢圓的方程;
(2)設過點的直線交橢圓
于不同兩點
,
.
為橢圓上一點,且滿足
(
為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com