【題目】在平面直角坐標(biāo)系中,已知橢圓
:
的離心率
,
,
分別為左、右焦點(diǎn),過
的直線交橢圓
于
,
兩點(diǎn),且
的周長為8.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線交橢圓
于不同兩點(diǎn)
,
.
為橢圓上一點(diǎn),且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時,求實(shí)數(shù)
的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近幾年,每年11月初,黃浦江上漂浮著的水葫蘆便會迅速增長,嚴(yán)重影響了市容景觀,為了解決這個環(huán)境問題,科研人員進(jìn)行科研攻關(guān),下圖是科研人員在實(shí)驗(yàn)室池塘中觀察水葫蘆面積與時間的函數(shù)關(guān)系圖像,假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說法:
①此指數(shù)函數(shù)的底數(shù)為;
②在第個月時,水葫蘆的面積會超過
;
③設(shè)水葫蘆面積蔓延至所需的時間分別為
,則有
;其中正確的說法有( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,
平面
,
分別是線段
的中點(diǎn),
.
(1)求證:∥平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若
在
上是單調(diào)遞增函數(shù),求
的取值范圍;
設(shè)
,當(dāng)
時,若
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)有兩個極值點(diǎn),試判斷函數(shù)
的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0),以橢圓短軸的一個頂點(diǎn)B與兩個焦點(diǎn)F1,F2為頂點(diǎn)的三角形周長是4+2
,且∠BF1F2=
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)Q(1,)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)方程組的解集;
(2)方程的實(shí)數(shù)根組成的集合;
(3)平面直角坐標(biāo)系內(nèi)所有第二象限的點(diǎn)組成的集合;
(4)二次函數(shù)的圖象上所有的點(diǎn)組成的集合;
(5)二次函數(shù) 的圖象上所有點(diǎn)的縱坐標(biāo)組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過圓x2+(y-2)2=4外一點(diǎn)A(3,-2),引圓的兩條切線,切點(diǎn)為T1,T2,則直線T1T2的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中
的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com