【題目】在平面直角坐標(biāo)系中,已知點(diǎn)F為拋物線(xiàn)
的焦點(diǎn),點(diǎn)A在拋物線(xiàn)E上,
點(diǎn)B在x軸上,且是邊長(zhǎng)為2的等邊三角形。
(1)求拋物線(xiàn)E的方程;
(2)設(shè)C是拋物線(xiàn)E上的動(dòng)點(diǎn),直線(xiàn)為拋物線(xiàn)E在點(diǎn)C處的切線(xiàn),求點(diǎn)B到直線(xiàn)
距離的最小值,并求此時(shí)點(diǎn)C的坐標(biāo)。
【答案】(1)(2)最小值為2,
【解析】
(1)先求出p的值,即得拋物線(xiàn)的方程.(2)
設(shè)點(diǎn),求出直線(xiàn)
的方程為
,再求得點(diǎn)
到直線(xiàn)
的距離為
,再利用基本不等式求函數(shù)的最小值及其點(diǎn)C的坐標(biāo).
(1)因?yàn)?/span>是邊長(zhǎng)為2的等邊三角形,所以
,
將代入
得,
,
解得或
(舍去).
所以?huà)佄锞(xiàn)的方程
.
(2)設(shè)點(diǎn),直線(xiàn)
的方程為
,
由,得
,
因?yàn)橹本(xiàn)為拋物線(xiàn)
在點(diǎn)
處的切線(xiàn),
所以,解得
,
所以直線(xiàn)的方程為
,
所以點(diǎn)到直線(xiàn)
的距離為
,
當(dāng)且僅當(dāng),即
時(shí)取得最小值2,此時(shí)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足
,
.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)記,
為數(shù)列
的前
項(xiàng)和,若
對(duì)任意的正整數(shù)
都成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)y=f(x)在(-∞,1]上有定義,對(duì)于給定的實(shí)數(shù)K,定義fK(x)=,給出函數(shù)f(x)=2x+1-4x,若對(duì)于任意x∈(-∞,1],恒有fK(x)=f(x),則( )
A.K的最大值為0
B.K的最小值為0
C.K的最大值為1
D.K的最小值為1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
平面
,
,
,
,點(diǎn)Q在棱AB上.
(1)證明:平面
.
(2)若三棱錐的體積為
,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)的和為
且
數(shù)列
滿(mǎn)足
且對(duì)任意正整數(shù)
都有
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)證明數(shù)列為等差數(shù)列.
(3)令問(wèn)是否存在正整數(shù)
使得
成等比數(shù)列?若存在,求出
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有6個(gè)人站成前后二排,每排3人,若甲、乙兩人左右、前后均不相鄰,則不同的站法種數(shù)為
A. 384 B. 480 C. 768 D. 240
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.
(1)當(dāng)a=1時(shí),求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)F的直線(xiàn)交橢圓C于M,N兩點(diǎn),線(xiàn)段MN的垂直平分線(xiàn)交y軸于點(diǎn)P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)的圖像過(guò)點(diǎn)
和
,且對(duì)于任意實(shí)數(shù)
,不等式
恒成立
(1)求的表達(dá)式;
(2)設(shè),若
在
上是增函數(shù),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com