【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知且
,若函數(shù)
沒有零點(diǎn),求證:
.
【答案】(1)見解析 (2)證明見解析
【解析】
(1)求導(dǎo)后分和
兩種情況進(jìn)行討論即可.
(2)由題函數(shù)沒有零點(diǎn),轉(zhuǎn)換為
與
在
無交點(diǎn),再求導(dǎo)分析
的單調(diào)性與最值,進(jìn)而求得
的取值范圍.再代入
,構(gòu)造函數(shù)分析單調(diào)性與最值證明即可.
解法一:(1)
當(dāng)時(shí),令
得
或
;
令得
.
∴函數(shù)的單調(diào)遞增區(qū)間為
和
,
單調(diào)遞減區(qū)間為
當(dāng)時(shí),令
得
;
令得
或
.
∴函數(shù)的單調(diào)遞增區(qū)間為
,
單調(diào)遞減區(qū)間為和
.
綜上所述,當(dāng)時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
和
,單調(diào)遞減區(qū)間為
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
和
.
(2)函數(shù)在
時(shí)無零點(diǎn),即
在
無解
則與
在
無交點(diǎn)
,
在
上單調(diào)遞增
,∴
則
由(1)得在
上單調(diào)遞增
要證
即證
即證
即證
令
在
時(shí)單調(diào)遞增,
所以原不等式成立.
解法二:(1)同解法一
(2)函數(shù)在
時(shí)無零點(diǎn),即
在
無解
則與
在
無交點(diǎn)
,
在
上單調(diào)遞增
,∴
則
要證,
即證,
即證
因?yàn)?/span>,
所以只需證 ,
即證 ,
令
,
在
時(shí)單調(diào)遞增,
,
所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有窮數(shù)列共有
項(xiàng)
,首項(xiàng)
,設(shè)該數(shù)列的前
項(xiàng)和為
,且
其中常數(shù)
.
(1)求證:數(shù)列是等比數(shù)列
(2)若,數(shù)列
滿足
,求出數(shù)列
的通項(xiàng)公式
(3)若(2)中的數(shù)列滿足不等式
,求出
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
為常數(shù).
(1)當(dāng)時(shí),求證:
有且僅有一個(gè)零點(diǎn);
(2)若函數(shù)在定義域內(nèi)既有極大值,又有極小值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,
,
,過
點(diǎn)作
的垂線,交
的延長線于點(diǎn)
,
.連結(jié)
,交
于點(diǎn)
,如圖1,將
沿
折起,使得點(diǎn)
到達(dá)點(diǎn)
的位置,如圖2.
(1)證明:平面平面
;
(2)若為
的中點(diǎn),
為
的中點(diǎn),且平面
平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
的長軸
,長為4,過橢圓的右焦點(diǎn)
作斜率為
(
)的直線交橢圓于
、
兩點(diǎn),直線
,
的斜率之積為
.
(1)求橢圓的方程;
(2)已知直線,直線
,
分別與
相交于
、
兩點(diǎn),設(shè)
為線段
的中點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在
的偶函數(shù),且
.當(dāng)
時(shí),
,若方程
有300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率是
,左右焦點(diǎn)分別為
,
,過點(diǎn)
的動(dòng)直線
與橢圓相交于
,
兩點(diǎn),當(dāng)直線
過
時(shí),
的周長為
.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線
方程;
(3)已知點(diǎn),直線
,
的斜率分別為
,
.問是否存在實(shí)數(shù)
,使得
恒成立?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com