【題目】已知直線:
,
:
,和兩點
(0,1),
(-1,0),給出如下結(jié)論:
①不論為何值時,
與
都互相垂直;
②當(dāng)變化時,
與
分別經(jīng)過定點A(0,1)和B(-1,0);
③不論為何值時,
與
都關(guān)于直線
對稱;
④如果與
交于點
,則
的最大值是1;
其中,所有正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,已知曲線C1的極坐標方程ρ2cos2θ=8,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.以極點O為原點,極軸所在直線為x軸建立平面直角坐標系,已知直線l的參數(shù)方程為
(t為參數(shù)).
(1)求A,B兩點的極坐標;
(2)曲線C1與直線l分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓和雙曲線的公共焦點,
是它們的一個公共點,且
,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( )
A. B.
C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地級市共有中學(xué)生,其中有
學(xué)生在
年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學(xué)生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為
,為進一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項教育基金”,對這三個等次的困難學(xué)生每年每人分別補助
元、
元、
元.經(jīng)濟學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加
,一般困難的學(xué)生中有
會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學(xué)生有
轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有
轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計了該地級市
年到
年共
年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份
取
時代表
年,
取
時代表
年,……依此類推,且
與
(單位:萬元)近似滿足關(guān)系式
.(
年至
年該市中學(xué)生人數(shù)大致保持不變)
(1)估計該市年人均可支配年收入為多少萬元?
(2)試問該市年的“專項教育基金”的財政預(yù)算大約為多少萬元?
附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),
,…,
,其回歸直線方程
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設(shè)圓求過
(2,0)的直線關(guān)于圓
的距離比
的直線方程;
(2)若圓與
軸相切于點
(0,3)且直線
=
關(guān)于圓
的距離比
,求此圓的
的方程;
(3)是否存在點,使過
的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓
的距離比始終相等?若存在,求出相應(yīng)的點
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具所需成本費用為P元,且P=1 000+5x+x2,而每套售出的價格為Q元,其中Q(x)=a+
(a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時,使得每套所需成本費用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時利潤最大,此時每套價格為30元,求a,b的值.(利潤=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐A﹣BCD的外接球半徑R= ,P,Q分別是AB,BC上的點,且滿足
=
=5,DP⊥PQ,則該正三棱錐的高為( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com