日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ln(1+x)﹣ (a>0)
          (1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
          (2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
          (3)證明: (e為自然對(duì)數(shù)的底數(shù)).

          【答案】
          (1)解:∵ ,

          ,

          ∵x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),

          f′(1)=0即a=2;


          (2)解:∵f(x)≥0在[0,+∞)上恒成立,∴f(x)min≥0,

          當(dāng)0<a≤1時(shí),f′(x)≥0在[0,+∞)上恒成立,

          即f(x)在[0,+∞)上為增函數(shù),

          ∴f(x)min=f(0)=0成立,即0<a≤1,

          當(dāng)a>1時(shí),令f′(x)≥0,則x>a﹣1,

          令f′(x)<0,則0≤x<a﹣1,

          即f(x)在[0,a﹣1)上為減函數(shù),在(a﹣1,+∞)上為增函數(shù),

          ∴f(x)min=f(a﹣1)≥0,又f(0)=0>f(a﹣1),則矛盾.

          綜上,a的取值范圍為(0,1].


          (3)解:要證 ,只需證 ,

          兩邊取自然對(duì)數(shù)得,

          ln >0ln(1+ )﹣ >0,

          由(2)知a=1時(shí),f(x)=ln(1+x)﹣ 在[0,+∞)單調(diào)遞增,

          >0,f(0)=0,

          ∴f( )=ln >f(0)=0,

          成立.


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的方程,解出即可;(2)問(wèn)題轉(zhuǎn)化為f(x)min≥0,根據(jù)函數(shù)的單調(diào)性,通過(guò)討論a的范圍求出a的具體范圍即可;(3)不等式兩邊取對(duì)數(shù),得到ln(1+ )﹣ >0,結(jié)合函數(shù)的單調(diào)性證明即可.
          【考點(diǎn)精析】掌握函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
          (Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
          (Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =(2sinx, cosx), =(﹣sinx,2sinx),函數(shù)f(x)=
          (1)求f(x)的單調(diào)遞增區(qū)間;
          (2)求函數(shù)f(x)在區(qū)間[0, ]的最值及所對(duì)應(yīng)的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。

          求證:(1)PA∥平面BDE ;

          (2)平面PAC平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若直線axby—4=0和圓x2y2=4沒(méi)有公共點(diǎn),則過(guò)點(diǎn)(ab)的直線與橢圓=1的公共點(diǎn)個(gè)數(shù)為(  )

          A. 0 B. 1 C. 2 D. a,b的取值來(lái)確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,過(guò)底面是矩形的四棱錐FABCD的頂點(diǎn)FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)GCD上且滿足DG=G.

          求證:(1)FG∥平面AED;

          (2)平面DAF⊥平面BAF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
          (1)求a與b的值;
          (2)求滿足f(x)<0的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某校高三畢業(yè)生報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將他們的體重?cái)?shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

          (Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù)

          (Ⅱ)已知A, 是該校報(bào)考體育專業(yè)的兩名學(xué)生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報(bào)考體育專業(yè)的學(xué)生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學(xué)生共6名,然后再?gòu)倪@6人中抽取體重小于55千克學(xué)生1人,體重不小于70千克的學(xué)生2人組成3人訓(xùn)練組,求A不在訓(xùn)練組且在訓(xùn)練組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,點(diǎn)是直線上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線

          (1)當(dāng)的橫坐標(biāo)為2時(shí),求切線方程;

          (2)求證:經(jīng)過(guò)三點(diǎn)的圓必過(guò)定點(diǎn),并求此定點(diǎn)的坐標(biāo);

          (3)當(dāng)線段長(zhǎng)度最小時(shí),求四邊形的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案