【題目】已知函數(shù).
(1)若函數(shù)的最小值為2,求
的值;
(2)當時,證明:
.
【答案】(1).(2)見解析
【解析】
(1)由題可知,的定義城為
,且
,分類討論參數(shù),當
和當
,利用導數(shù)研究函數(shù)的單調性和最值,得出當
時,
,
取得最小值
,結合已知
的最小值為2,即可求出
的值;
(2)當,結合第(1)可知
,將證明
轉化為只要證
,構造新函數(shù)
,通過導數(shù)研究函數(shù)的單調性,進而得出當
時,
,即
,即可證明出
.
解:(1)的定義城為
,
且,
函數(shù)
的最小值為2,
若,則
,于是
在
上單調遞增,
故無最小值,不合題意,
若,則當
時,
;當
時,
,
故在
上單調遞減,在
上單調遞增,
于是當時,
,
取得最小值
,
由已知得,解得
.
綜上可知.
(2)∵由(1)得,當時,
取得最小值
,
所以當時,
取得最小值
,即
,
則,即:
,
由題知,當時,證明:
,
∴要證,只要證
,
∴令,則
,
∴當時,
,
所以在
上單調遞增.
∴當時,
,即
,
∴當時,不等式
成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象的一條對稱軸為
,其中
為常數(shù),且
,給出下述四個結論:
①函數(shù)的最小正周期為
;
②將函數(shù)的圖象向左平移
所得圖象關于原點對稱;
③函數(shù)在區(qū)間
,上單調遞增;
④函數(shù)在區(qū)間
上有
個零點.
其中所有正確結論的編號是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求實數(shù)x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當0≤x≤1時,有g(x)=f(x),當x∈[1,2]時,求函數(shù)y=g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為促進全面健身運動,某地跑步團體對本團內的跑友每周的跑步千米數(shù)進行統(tǒng)計,隨機抽取的100名跑友,分別統(tǒng)計他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.
(1)由頻率分布直方圖計算跑步千米數(shù)不小于70千米的人數(shù);
(2)已知跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在
的
,跑步千米數(shù)在
的人數(shù)是跑步千米數(shù)在
的
,現(xiàn)在從跑步千米數(shù)在
的跑友中抽取3名代表發(fā)言,用
表示所選的3人中跑步千米數(shù)在
的人數(shù),求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為
,如果存在非零常數(shù)
,對于任意
,都有
,則稱函數(shù)
是“似周期函數(shù)”,非零常數(shù)
為函數(shù)
的“似周期”.現(xiàn)有下面四個關于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為
,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“
或
”.
以上正確結論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一袋中有大小、形狀相同的2個白球和10個黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補一個白球放到袋中.在重復次這樣的操作后,記袋中的白球個數(shù)為
.
(1)求;
(2)設,求
;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺機器在三年使用期內的維修次數(shù),
表示1臺機器在維修上所需的費用(單位:元),
表示購機的同時購買的維修服務次數(shù).
(1)若,求
與
的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學生進行調查.
(1)已知抽取的名學生中含女生45人,求
的值及抽取到的男生人數(shù);
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調查結果得到的
列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;
(3)在抽取的選擇“地理”的學生中按分層抽樣再抽取6名,再從這6名學生中抽取2人了解學生對“地理”的選課意向情況,求2人中至少有1名男生的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在等腰梯形中,
,
,
分別為
,
的中點,
,
為
中點現(xiàn)將四邊形
沿
折起,使平面
平面
,得到如圖②所示的多面體在圖②中,
(1)證明:;
(2)求二面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com