【題目】設(shè)橢圓的方程為
,點
為坐標(biāo)原點,點
,
的坐標(biāo)分別為
,
,
,直線
的斜率為
.
(1)求橢圓的方程;
(2)若斜率為的直線
交橢圓
于
,
兩點,交
軸于點
,問是否存在實數(shù)
使得以
為直徑的圓恒過點
?若存在,求
的值;若不存在,說明理由.
【答案】(1)(2)存在;
【解析】
(1)根據(jù)題意,設(shè)點的坐標(biāo)為
,可得
,進(jìn)而可得橢圓
的方程;
(2)根據(jù)題意,設(shè)直線的方程為
,聯(lián)立方程,通過韋達(dá)定理,假設(shè)存在實數(shù)
,使得以
為直徑的圓恒過點
,即可得
,利用向量數(shù)量積為
,解得即可.
(1)設(shè)點的坐標(biāo)為
,
,
,
,又
,
,
橢圓
的方程為
.
(2)依題意,設(shè)直線的方程為
,代入
,
得.
設(shè),
,則
,
.
假設(shè)存在實數(shù),使得以
為直徑的圓恒過點
,則
.
又,
,
∴,
即,將
,
代入,整理得
,解得
,
即當(dāng)時,存在實數(shù)
使得以
為直徑的圓恒過點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是大于1的自然數(shù),找出所有自然數(shù)
,使得對于
存在互質(zhì)的自然數(shù)
、
,滿足
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)為研究“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩游戲,而調(diào)查的女生中有9人喜歡玩游戲.
(1)根據(jù)以上數(shù)據(jù)完成2×2的列聯(lián)表;
(2)根據(jù)以上數(shù)據(jù),在犯錯誤的概率不超過0.025的前提下,能否認(rèn)為“喜歡玩電腦游戲與性別有關(guān)系”?
男生 | 女生 | 總計 | |
喜歡玩游戲 | |||
不喜歡玩游戲 | |||
總計 |
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機(jī)抽取了 100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群”.
(1)求的值,并求這100名學(xué)生月消費金額的樣本平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有
的把握認(rèn)為“高消費群”與性別有關(guān)?
附: (其中
樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進(jìn)口博覽會期間,甲、乙、丙三家中國企業(yè)都有意向購買同一種型號的機(jī)床設(shè)備,他們購買該機(jī)床設(shè)備的概率分別為,且三家企業(yè)的購買結(jié)果相互之間沒有影響,則三家企業(yè)中恰有1家購買該機(jī)床設(shè)備的概率是
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于
的方程
有四個不相等的實數(shù)根,則實數(shù)
的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計
的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線
:
,拋物線
:
(
).
(1)若直線過拋物線
的焦點,求拋物線
的方程;
(2)已知拋物線上存在關(guān)于直線
對稱的相異兩點
和
.
①求證:線段PQ的中點坐標(biāo)為;
②求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com