【題目】已知橢圓,其左右頂點(diǎn)分別為
,
,上下頂點(diǎn)分別為
,
.圓
是以線段
為直徑的圓.
(1)求圓的方程;
(2)若點(diǎn),
是橢圓上關(guān)于
軸對(duì)稱的兩個(gè)不同的點(diǎn),直線
,
分別交
軸于點(diǎn)
,求證:
為定值;
(3)若點(diǎn)是橢圓Γ上不同于點(diǎn)
的點(diǎn),直線
與圓
的另一個(gè)交點(diǎn)為
.是否存在點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
【答案】(1)=
;(2)
;(3)不存在點(diǎn)
,使得
,見解析
【解析】
(1)由題意得:,
,即可求出圓
的方程;
(2)由題意可知:,
,設(shè)
,則
,
,求出直線
的方程是,從而求出點(diǎn)
坐標(biāo),同理求出點(diǎn)
坐標(biāo),再利用點(diǎn)
在橢圓上,坐標(biāo)滿足橢圓方程,即可化簡出
為定值;
(3)顯然直線的斜率存在,設(shè)其方程為:
=
,代入橢圓方程得到
=
,再利用根與系數(shù)的關(guān)系和弦長公式求出
的長,再利用構(gòu)造直角三角形用勾股定理算出
的長,假設(shè)存在點(diǎn)
,使得
,則
=
,所以
,化簡得:
=
,此方程在實(shí)數(shù)范圍內(nèi)無解,故原假設(shè)錯(cuò)誤,即不存在點(diǎn)
,使得
.
(1)由題意得:,
,
∴ 圓的圓心為原點(diǎn),半徑為
,
∴ 圓的方程是
=
;
(2)由題意可知:,
,設(shè)
,則
,
,
∴ 直線的方程是:
,∴點(diǎn)
,同理點(diǎn)
,
又∵ 點(diǎn)在橢圓
上,∴
∴ ,
(3)顯然直線的斜率存在,設(shè)其方程為:
=
,
聯(lián)立方程,化簡得:
=
,
設(shè),則
,
所以,
因?yàn)閳A心到直線
的距離
,
所以=
,
假設(shè)存在點(diǎn),使得
,則
=
,
所以,化簡得:
=
,此方程在實(shí)數(shù)范圍內(nèi)無解,
故原假設(shè)錯(cuò)誤,即不存在點(diǎn),使得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊鐵皮零件,其形狀是由邊長為的正方形截去一個(gè)三角形
所得的五邊形
,其中
,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮
,使得矩形相鄰兩邊分別落在
上,另一頂點(diǎn)
落在邊
或
邊上.設(shè)
,矩形
的面積為
.
(1)試求出矩形鐵皮的面積
關(guān)于
的函數(shù)解析式,并寫出定義域;
(2)試問如何截。取何值時(shí)),可使得到的矩形
的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點(diǎn),且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
給定橢圓,稱圓心在原點(diǎn)
,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(I)求橢圓C的方程和其“準(zhǔn)圓”方程;
(II )點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得
與橢圓C都只有一個(gè)交點(diǎn),且
分別交其“準(zhǔn)圓”于點(diǎn)M,N.
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求
的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,
,
,
,
,
,
組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間
之外,則認(rèn)為該零件屬“不合格”的零件,其中
,
分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出
個(gè)零件,標(biāo)上記號(hào),并從這
個(gè)零件中再抽取
個(gè),求再次抽取的
個(gè)零件中恰有
個(gè)尺寸小于
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)和
是雙曲線
上的兩點(diǎn),線段
的中點(diǎn)為
,直線
不經(jīng)過坐標(biāo)原點(diǎn)
.
(1)若直線和直線
的斜率都存在且分別為
和
,求證:
;
(2)若雙曲線的焦點(diǎn)分別為、
,點(diǎn)
的坐標(biāo)為
,直線
的斜率為
,求由四點(diǎn)
、
、
、
所圍成四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,真命題是( 。
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、
是異面直線,
、
是異面直線,則
、
是異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,O為線段AC上一點(diǎn),平面ADC⊥平面ABC,且△ADO,△ABO為等腰直角三角形,斜邊AO=4.
(Ⅰ)求證:AC⊥BD;
(Ⅱ)將△BDO繞DO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com