日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓,其左右頂點(diǎn)分別為,,上下頂點(diǎn)分別為,.圓是以線段為直徑的圓.

          (1)求圓的方程;

          (2)若點(diǎn),是橢圓上關(guān)于軸對(duì)稱的兩個(gè)不同的點(diǎn),直線,分別交軸于點(diǎn),求證:為定值;

          (3)若點(diǎn)是橢圓Γ上不同于點(diǎn)的點(diǎn),直線與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

          【答案】1=;(2;(3)不存在點(diǎn),使得,見解析

          【解析】

          (1)由題意得:,,即可求出圓的方程;

          (2)由題意可知:,,設(shè),則,,求出直線的方程是,從而求出點(diǎn)坐標(biāo),同理求出點(diǎn)坐標(biāo),再利用點(diǎn)在橢圓上,坐標(biāo)滿足橢圓方程,即可化簡出為定值;

          (3)顯然直線的斜率存在,設(shè)其方程為:=,代入橢圓方程得到=,再利用根與系數(shù)的關(guān)系和弦長公式求出的長,再利用構(gòu)造直角三角形用勾股定理算出的長,假設(shè)存在點(diǎn),使得,則=,所以,化簡得:=,此方程在實(shí)數(shù)范圍內(nèi)無解,故原假設(shè)錯(cuò)誤,即不存在點(diǎn),使得.

          (1)由題意得:,,

          ∴ 圓的圓心為原點(diǎn),半徑為,

          ∴ 圓的方程是=;

          2)由題意可知:,,設(shè),則,,

          ∴ 直線的方程是:,∴點(diǎn),同理點(diǎn),

          又∵ 點(diǎn)在橢圓上,∴

          ,

          (3)顯然直線的斜率存在,設(shè)其方程為:=,

          聯(lián)立方程,化簡得:=,

          設(shè),則,

          所以,

          因?yàn)閳A心到直線的距離,

          所以=,

          假設(shè)存在點(diǎn),使得,則=,

          所以,化簡得:=,此方程在實(shí)數(shù)范圍內(nèi)無解,

          故原假設(shè)錯(cuò)誤,即不存在點(diǎn),使得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一塊鐵皮零件,其形狀是由邊長為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊邊上.設(shè),矩形的面積為.

          1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫出定義域;

          2)試問如何截。取何值時(shí)),可使得到的矩形的面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,EF分別是AB,PD的中點(diǎn),且PA=AD

          (Ⅰ)求證:AF∥平面PEC;

          (Ⅱ)求證:平面PEC⊥平面PCD

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為.

          I)求橢圓的方程和其準(zhǔn)圓方程;

          (II )點(diǎn)P是橢圓C準(zhǔn)圓上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),且分別交其準(zhǔn)圓于點(diǎn)M,N.

          1)當(dāng)P準(zhǔn)圓軸正半軸的交點(diǎn)時(shí),求的方程;

          2)求證:|MN|為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

          1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于不合格的零件;

          2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn)

          1)若直線和直線的斜率都存在且分別為,求證:

          2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、所圍成四邊形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列四個(gè)命題中,真命題是( 。

          A.和兩條異面直線都相交的兩條直線是異面直線

          B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

          C.和兩條異面直線都垂直的直線是異面直線的公垂線

          D.、是異面直線,、是異面直線,則、是異面直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐DABC,O為線段AC上一點(diǎn),平面ADC⊥平面ABC,且△ADO,ABO為等腰直角三角形,斜邊AO=4.

          ()求證:ACBD;

          ()將△BDODO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案