日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,拋物線C上的點(diǎn)M(2,m)到焦點(diǎn)F的距離為3.
          (Ⅰ)求拋物線C的方程:
          (Ⅱ)過(guò)點(diǎn)(2,0)的直線l與拋物線C交于A、B兩點(diǎn),若|AB|=4
          6
          ,求直線l的方程.
          (Ⅰ)∵拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,
          拋物線C上的點(diǎn)M(2,m)到焦點(diǎn)F的距離為3,
          ∴設(shè)拋物線的方程為y2=2px(p>0),
          M到準(zhǔn)線的距離為3,即
          p
          2
          +2=3
          ,解得p=2,
          ∴拋物線C的方程為y2=4x.…(3分)
          (Ⅱ)設(shè)直線l的方程為y=k(x-2),
          設(shè)A(x1,y1),B(x2,y2),
          y2=4x,
          y=k(x-2),
          得k2x2-(4k2+4)x+4k2=0,
          根據(jù)韋達(dá)定理,x1+x2=
          4(k2+1)
          k2
          ,x1x2=4.
          |AB|2=(1+k2)|x1-x2|2=(1+k2)[(x1+x2)2-4x1x2]
          =(1+k2)[
          16(k4+2k2+1)
          k4
          -16]

          =16(1+k2)
          2k2+1
          k4
          =96

          整理得4k4-3k2-1=0,解得k=±1.
          ∴直線l的方程為x-y-2=0或x+y-2=0.…(10分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          直線L:
          x
          4
          +
          y
          3
          =1與橢圓E:
          x2
          16
          +
          y2
          9
          =1相交于A,B兩點(diǎn),該橢圓上存在點(diǎn)P,使得△PAB的面積等于3,則這樣的點(diǎn)P共有( 。
          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知直線y=kx-1與雙曲線x2-y2=4沒(méi)有公共點(diǎn),則實(shí)數(shù)k的取值范圍為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,以
          3
          2
          為離心率的橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右頂點(diǎn)分別為A和B,點(diǎn)P是橢圓位于x軸上方的一點(diǎn),且△PAB的面積最大值為2.
          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)點(diǎn)Q是橢圓位于x軸下方的一點(diǎn),直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設(shè)△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知點(diǎn)P(-1,
          3
          2
          )
          是橢圓E:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
          (1)求橢圓E的方程;
          (2)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),是否存在λ,滿足
          PA
          +
          PB
          PO
          (0<λ<4,且λ≠2),且M(2,1)到AB的距離為
          5
          ?若存在,求λ值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知橢圓C:x2+
          y2
          a2
          =1(a>1)
          的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)F的直線l:y=mx-c(其中c=
          a2-1
          )與橢圓C相交于P,Q兩點(diǎn),且滿足:
          OP
          OQ
          =
          a2(c2-m2)-1
          2-c2

          (Ⅰ)試用a表示m2
          (Ⅱ)求e的最大值;
          (Ⅲ)若e∈(
          1
          3
          1
          2
          )
          ,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          2
          2
          ,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過(guò)點(diǎn)F2與x軸不垂直的直線l交橢圓于A、B兩點(diǎn),則△ABF1的周長(zhǎng)為4
          2

          (1)求橢圓的方程;
          (2)若C(
          1
          3
          ,0),使得|AC|=|BC|,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C的焦點(diǎn)在x軸上,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn).若橢圓的長(zhǎng)軸長(zhǎng)是6,且cos∠OFA=
          2
          3

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)求點(diǎn)R(0,1)與橢圓C上的點(diǎn)N之間的最大距離;
          (Ⅲ)設(shè)Q是橢圓C上的一點(diǎn),過(guò)Q的直線l交x軸于點(diǎn)P(-3,0),交y軸于點(diǎn)M.若
          MQ
          =2
          QP
          ,求直線l的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知拋物線C的方程為x2=4y,直線y=2與拋物線C相交于M,N兩點(diǎn),點(diǎn)A,B在拋物線C上.
          (Ⅰ)若∠BMN=∠AMN,求證:直線AB的斜率為
          2
          ;
          (Ⅱ)若直線AB的斜率為
          2
          ,求證點(diǎn)N到直線MA,MB的距離相等.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案