日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐的底面是直角梯形,, ,的中點(diǎn),.

          (Ⅰ)證明:⊥平面;

          (Ⅱ)求二面角的大;

          (Ⅲ)線段上是否存在一點(diǎn),使得直線平面. 若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.

          【答案】(Ⅰ)見(jiàn)證明;(Ⅱ);(Ⅲ)見(jiàn)解析

          【解析】

          (I)依題意易得兩兩垂直,以為原點(diǎn)建立空間直角坐標(biāo)系.通過(guò),證得平面.(II)通過(guò)計(jì)算平面和平面的法向量,由此計(jì)算出面面角的余弦值,進(jìn)而求得二面角的大小.(III)設(shè)出的坐標(biāo),利用直線的方向向量和平面的法向量垂直,求出關(guān)于點(diǎn)坐標(biāo)的參數(shù),由此判斷出點(diǎn)的位置.

          (Ⅰ)因?yàn)?/span> 平面.

          所以,,又.

          如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.

          由題意得

          所以,,.

          所以,,

          所以,,

          所以平面.

          (Ⅱ)設(shè)平面的法向量為,

          因?yàn)?/span>.

          所以,即,

          ,則.

          于是.

          因?yàn)?/span>⊥平面,所以為平面的法向量,

          .

          所以.

          因?yàn)樗蠖娼菫殁g角,所以二面角大小為.

          (Ⅲ)解:設(shè)

          ,

          ,.

          設(shè)平面的法向量,

          ,即 ,

          ,. 于是,

          如果直線平面,

          那么,解得 .

          所以,存在點(diǎn)為線段靠近點(diǎn)的三等分點(diǎn),使得直線平面.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機(jī)抽取200名男性使用者和100名女性使用者,對(duì)該款產(chǎn)品進(jìn)行評(píng)分,繪制出如下頻率分布直方圖.

          (1)利用組中值(數(shù)據(jù)分組后,一個(gè)小組的組中值是指這個(gè)小組的兩個(gè)端點(diǎn)的數(shù)的平均數(shù)),估計(jì)100名女性使用者評(píng)分的平均值;

          (2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從這200名男性中抽取20名,在這20名中,從評(píng)分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評(píng)分在區(qū)間的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)是否存在實(shí)數(shù),使得有三個(gè)相異零點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,的中點(diǎn).

          (1)求證:∥平面

          (2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某省的一個(gè)氣象站觀測(cè)點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見(jiàn)度(單位:cm)的情況如表1:

          900

          700

          300

          100

          0.5

          3.5

          6.5

          9.5

          該省某市2017年11月份AQI指數(shù)頻數(shù)分布如表2:

          頻數(shù)(天)

          3

          6

          12

          6

          3

          <>(1)設(shè),若之間是線性關(guān)系,試根據(jù)表1的數(shù)據(jù)求出關(guān)于的線性回歸方程;

          (2)小李在該市開(kāi)了一家洗車(chē)店,洗車(chē)店每天的平均收入與AQI指數(shù)存在相關(guān)關(guān)系如表3:

          日均收入(元)

          -2000

          -1000

          2000

          6000

          8000

          根據(jù)表3估計(jì)小李的洗車(chē)店2017年11月份每天的平均收入.

          附參考公式:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,四邊形是菱形,交BD于點(diǎn),是邊長(zhǎng)為2的正三角形,分別是的中點(diǎn).

          (1)求證:EF//平面SAD;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

          (1)求橢圓的方程;

          (2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實(shí)欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩(shī)人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問(wèn)題:求圓的直徑、正方形的邊長(zhǎng)等.其中一問(wèn):現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(

          A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)當(dāng)時(shí),相交于,兩點(diǎn),求的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案