(本題滿分12分)已知函數(shù)(
)
(1)若的定義域和值域均是
,求實數(shù)
的值;
(2)若對任意的,
,總有
,求實數(shù)
的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
某地有三家工廠,分別位于矩形ABCD 的頂點A,B 及CD的中點P 處,已知AB="20km,CB" ="10km" ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域中(含邊界),且與A,B等距離的一點O 處建造一個污水處理廠,并鋪設排污管道AO,BO,OP ,設排污管道的總長為km.
(Ⅰ)設∠BAO=(rad),將
表示成
的函數(shù)關系式;
(Ⅱ)請用(Ⅰ)中的函數(shù)關系式,確定污水處理廠的位置,使三條排污管道總長度最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題共12分)
已知函數(shù)的最小值不小于
, 且
.
(1)求函數(shù)的解析式;
(2)函數(shù)在
的最小值為實數(shù)
的函數(shù)
,求函數(shù)
的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)寫出函數(shù)圖像的頂點坐標及其單調(diào)遞增遞減區(qū)間.
(2)若函數(shù)的定義域和值域是,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分26分)
已知函數(shù).
(1)當時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù),并指出相應的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(I)當時,若方程
有一根大于1,一根小于1,求
的取值范圍;
(II)當
時,在
時取得最大值,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù)滿足
,且
在
上單調(diào)遞增.
(1)求的解析式;
(2)若在區(qū)間
上的最小值為
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)對一切實數(shù)x,y都有
成立,且
.
(1)求的值
(2)求的解析式
(3)若,對任意的
,總存在
,使得
成立,求實數(shù)
的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com