日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知矩形ABCD中,E、F分別是AB、CD上的點,BE=CF=1,BC=2,AB=CD=3,P、Q分別為DE、CF的中點,現(xiàn)沿著EF翻折,使得二面角A﹣EF﹣B大小為
          (Ⅰ)求證:PQ∥平面BCD;
          (Ⅱ)求二面角A﹣DB﹣E的余弦值.

          【答案】證明:(Ⅰ)取EB的中點M,連接PM,QM, ∵P為DE的中點,
          ∴PM∥BD,
          ∵PM平面BCD,BD平面BCD,
          ∴PM∥平面BCD,
          同理MQ∥平面BCD,
          ∵PM∩MQ=M,
          ∴平面PMQ∥平面BCD,
          ∵PQ平面PQM,
          ∴PQ∥平面BCD;
          (Ⅱ)解:在平面DFC內(nèi),過F作FC的垂線,則∠DFC= ,建立坐標(biāo)系,則E(2,0,0),C(0,1,0),B(2,1,0),D(0,﹣1,﹣ ),A(2,﹣1, ),
          =(﹣2,﹣2, ), =(0,2,﹣ ), =(0,1,0),
          設(shè)平面DAB的一個法向量為 =(x,y,z),則 ,取 =(0, , ),
          同理平面DBE的一個法向量為 =( ,0, ),
          ∴cos< , >= = ,
          ∴二面角A﹣DB﹣E的余弦值為

          【解析】(Ⅰ)取EB的中點M,連接PM,QM,證明:平面PMQ∥平面BCD,即可證明PQ∥平面BCD;(Ⅱ)建立坐標(biāo)系,利用向量方法,即可求二面角A﹣DB﹣E的余弦值.
          【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩艘輪船都要?吭谕粋泊位,它們可能在一晝夜的任意時刻到達(dá).甲、乙兩船?坎次坏臅r間分別為4小時與2小時,求有一艘船?坎次粫r必需等待一段時間的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費用為x萬元時,銷售量t萬件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為5+ 萬元/萬件.
          (1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
          (2)促銷費用投入多少萬元時,廠家的利潤最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若平面點集 滿足:任意點 ,存在 ,都有 ,則稱該點集 是“ 階聚合”點集,F(xiàn)有四個命題:
          ①若 ,則存在正數(shù) ,使得 是“ 階聚合”點集;
          ②若 ,則 是“ 階聚合”點集;
          ③若 ,則 是“2階聚合”點集;
          ④若 是“ 階聚合”點集,則 的取值范圍是 .
          其中正確命題的序號為( )
          A.①④
          B.②③
          C.①②
          D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本題滿分14)

          已知正項數(shù)列滿足:對任意正整數(shù),都有成等差數(shù)列,成等比數(shù)列,且

          )求證:數(shù)列是等差數(shù)列;

          )求數(shù)列的通項公式;

          (Ⅲ) 設(shè)如果對任意正整數(shù),不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題 “存在 ”,命題 :“曲線 表示焦點在 軸上的橢圓”,命題 “曲線 表示雙曲線”
          (1)若“ ”是真命題,求實數(shù) 的取值范圍;
          (2)若 的必要不充分條件,求實數(shù) 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】偶函數(shù) = 的圖象過點 ,且在 處的切線方程為 .求 的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=x2-2ax+2(a∈R),當(dāng)x∈[-1,+∞)時,恒成立,則a的取值范圍是_________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學(xué)名著,其中有這樣一段表述:“遠(yuǎn)看巍巍塔七層,紅光點點倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
          A.14
          B.12
          C.10
          D.8

          查看答案和解析>>

          同步練習(xí)冊答案