日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+a(a為常數(shù)).
          (1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
          (2)若f(x)在區(qū)間[﹣2,2]上的最大值是20,求f(x)在該區(qū)間上的最小值.

          【答案】
          (1)解:∵函數(shù)f(x)的定義域?yàn)镽,f′(x)=﹣3x2+6x+9.

          令f′(x)<0,解得x<﹣1或x>3,

          所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣1),(3,+∞)


          (2)解:∵f(x)=﹣x3+3x2+9x+a,∴f′(x)=﹣3x2+6x+9≥0,得x2﹣2x﹣3≤0,﹣1≤x≤3,列表如下;

          x

          ﹣2

          (﹣2,﹣1)

          ﹣1

          (﹣1,2)

          2

          f′(x)

          0

          +

          f(x)

          a﹣14

          遞減

          a﹣5

          遞增

          a+

          22

          ∴f(x)最大值=f(2)=a+22,∴a+22=20,∴a=﹣2,∴f(x)最小值=f(﹣1)=a﹣5=﹣7

          故函數(shù)的最小值是﹣7


          【解析】(1)出導(dǎo)數(shù),令導(dǎo)數(shù)小于0,解不等式求出函數(shù)的單調(diào)區(qū)間(2)先求出端點(diǎn)的函數(shù)值f(﹣2)與f(2),比較f(2)與f(﹣2)的大小,然后根據(jù)函數(shù)f(x)在[﹣1,2]上單調(diào)遞增,在[﹣2,﹣1]上單調(diào)遞減,得到f(2)和f(﹣1)分別是f(x)在區(qū)間[﹣2,2]上的最大值和最小值,建立等式關(guān)系求出a,從而求出函數(shù)f(x)在區(qū)間[﹣2,2]上的最小值.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) 為奇函數(shù)
          (1)求 的值.
          (2)探究 的單調(diào)性,并證明你的結(jié)論.
          (3)求滿足 的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=x2+bx+c3x(b,c∈R),若{x∈R|f(x)=0}={x∈R|f(f(x))=0}≠,則b+c的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
          (Ⅰ)求A,ω,φ的值;
          (Ⅱ)求f(x)的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞]上單調(diào)遞增,若實(shí)數(shù)a滿足f(log2a)+f( )≤2f(1),則a的取值范圍是(
          A.[1,2]
          B.(0, ]
          C.(0,2]
          D.[ ,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知隨機(jī)變量ξ的分布如下:

          ξ

          1

          2

          3

          P

          1﹣

          2a2

          則實(shí)數(shù)a的值為(
          A.﹣ 或﹣
          B.
          C.﹣
          D. 或﹣

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若f(x)的定義域?yàn)镽,f′(x)>3恒成立,f(1)=9,則f(x)>3x+6解集為(
          A.(﹣1,1)
          B.(﹣1,+∞)
          C.(﹣∞,﹣1)
          D.(1.+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) 的部分圖象如圖所示.

          (1)求函數(shù) 的解析式;
          (2)求函數(shù) 的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體ABCD-A1B1C1D1中,如圖.

          (1)求證:平面AB1D1∥平面C1BD;
          (2)試找出體對(duì)角線A1C與平面AB1D1和平面C1BD的交點(diǎn)E,F(xiàn),并證明:A1E=EF=FC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案