日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若數(shù)列、滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

          (1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說(shuō)明理由;

          (2)若無(wú)窮數(shù)列是各項(xiàng)均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;

          (3)設(shè)為數(shù)列的“偏差數(shù)列”,,若對(duì)任意恒成立,求實(shí)數(shù)M的最小值.

          【答案】(1)見(jiàn)解析;(2);(3)

          【解析】

          1{an}不一定為等差數(shù)列,如

          2)設(shè)數(shù)列{an}的公比為q,解方程可得首項(xiàng)和公比,由等比數(shù)列的通項(xiàng)公式和求和公式,計(jì)算可得所求值;

          3)由累加法可得數(shù)列{an}的通項(xiàng)公式,討論n為奇數(shù)或偶數(shù),求得極限,由不等式恒成立思想可得M的最小值.

          解:(1) 如,則為常數(shù)列,但不是等差數(shù)列,

          (2) 設(shè)數(shù)列的公比為,則由題意,均為正整數(shù),

          因?yàn)?/span>,所以,

          解得,

          (N*),

          ①當(dāng)時(shí),,,

          ② 當(dāng)時(shí),,

          綜上,的值為;

          (3) 由得,=

          故有:,

          ,

          累加得:

          =

          =,

          ,所以

          當(dāng)n為奇數(shù)時(shí),單調(diào)遞增,,,

          當(dāng)n為偶數(shù)時(shí),單調(diào)遞減,,

          從而,所以M,即M的最小值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】

          在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)P的軌跡為,直線C交于A,B兩點(diǎn).

          )寫出C的方程;

          )若,求k的值;

          )若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有||>||

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用長(zhǎng)為18 cm的鋼條圍成一個(gè)長(zhǎng)方體形狀的框架,要求長(zhǎng)方體的長(zhǎng)與寬之比為21,問(wèn)該長(zhǎng)方體的長(zhǎng)、寬、高各為多少時(shí),其體積最大?最大體積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

          )若為線段的中點(diǎn),求證平面;

          )求三棱錐體積的最大值;

          )若,點(diǎn)在線段上,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某賽季甲、乙兩位運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示.

          (1)從甲、乙兩人的這5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙的成績(jī)高的概率;

          (2)試用統(tǒng)計(jì)學(xué)中的平均數(shù)、方差知識(shí)對(duì)甲、乙兩位運(yùn)動(dòng)員的測(cè)試成績(jī)進(jìn)行分析.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為菱形,EDD1中點(diǎn).

          1)求證:BD1∥平面ACE;

          2)求證:BD1AC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn),

          (1)若直線平行于,與圓相交于,兩點(diǎn),,求直線的方程;

          (2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說(shuō)明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直四棱柱中,底面是邊長(zhǎng)為2的正方形, 分別為線段 的中點(diǎn).

          (1)求證: ||平面;

          (2)四棱柱的外接球的表面積為,求異面直線所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通過(guò)隨機(jī)詢問(wèn)100名性別不同的大學(xué)生是否愛(ài)好踢毽子,得到如下的列聯(lián)表:

          隨機(jī)變量經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測(cè)值k0≈4.762,參照附表,得到的正確結(jié)論是(  )

          A. 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

          B. 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

          C. 有97.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

          D. 有97.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

          查看答案和解析>>

          同步練習(xí)冊(cè)答案