【題目】
在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn)
,
的距離之和等于4,設(shè)點(diǎn)P的軌跡為
,直線
與C交于A,B兩點(diǎn).
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有||>|
|.
【答案】(Ⅰ),(Ⅱ)略.
【解析】
(I)根據(jù)橢圓定義可知a=2,,所以b=1,再注意焦點(diǎn)在y軸上,曲線C的方程為
.
(II) 直線與橢圓方程聯(lián)立,消y得關(guān)于x的一元二次方程,再根據(jù)坐標(biāo)化為
,借助直線方程和韋達(dá)定理建立關(guān)于k的方程,求出k值.
(III)要證:||>|
|,
,再根據(jù)A在第一象限,故
,
,從而證出結(jié)論.
解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以為焦點(diǎn),長(zhǎng)半軸為2的橢圓.它的短半軸
,
故曲線C的方程為. 3分
(Ⅱ)設(shè),其坐標(biāo)滿足
消去y并整理得,
故. 5分
若,即
.而
,
于是,
化簡(jiǎn)得,所以
. 8分
(Ⅲ)
.
因?yàn)?/span>A在第一象限,故.由
知
,從而
.又
,
故,
即在題設(shè)條件下,恒有. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓
:
(
)的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn),
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù)
,當(dāng)
時(shí),
.
(1)求;
(2)當(dāng)時(shí),求
的解析式.
(3)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
.
(1)若函數(shù)f(x)在處有極值,求函數(shù)f(x)的最大值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式在
上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)經(jīng)統(tǒng)計(jì),在某儲(chǔ)蓄所一個(gè)營(yíng)業(yè)窗口排隊(duì)等候的人數(shù)及相應(yīng)概率如下:
排隊(duì)人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及5人以上 |
概率 |
求至少3人排隊(duì)等候的概率是多少?
(2)在區(qū)間上隨機(jī)取兩個(gè)數(shù)m,n,求關(guān)于x的一元二次方程
有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有編號(hào)為的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):
編號(hào) | ||||||||||
直徑 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直徑在區(qū)間內(nèi)的零件為一等品.
(1)上述10個(gè)零件中,隨機(jī)抽取1個(gè),求這個(gè)零件為一等品的概率.
(2)從一等品零件中,隨機(jī)抽取2個(gè);
①用零件的編號(hào)列出所有可能的抽取結(jié)果;
②求這2個(gè)零件直徑相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列、
滿足
(
N*),則稱
為數(shù)列
的“偏差數(shù)列”.
(1)若為常數(shù)列,且為
的“偏差數(shù)列”,試判斷
是否一定為等差數(shù)列,并說(shuō)明理由;
(2)若無(wú)窮數(shù)列是各項(xiàng)均為正整數(shù)的等比數(shù)列,且
,
為數(shù)列
的“偏差數(shù)列”,求
的值;
(3)設(shè),
為數(shù)列
的“偏差數(shù)列”,
,
且
,若
對(duì)任意
恒成立,求實(shí)數(shù)M的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com