日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)x,滿足,其中k為整數(shù),則稱函數(shù)為定義域上的“k階局部奇函數(shù)”.

          (1)已知函數(shù),試判斷是否為上的“2階局部奇函數(shù)”?并說明理由;

          (2)若上的“1階局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;

          (3)若,對任意的實(shí)數(shù),函數(shù)恒為上的“k階局部奇函數(shù)”,求整數(shù)k取值的集合.

          【答案】(1)是,理由見解析;(2);(3)

          【解析】

          1)根據(jù)題意,上的“2階局部奇函數(shù)”等價(jià)于關(guān)于x的方程上有解,列出方程,解方程即可;

          2)由“1階局部奇函數(shù)”的定義,列出方程,討論方程成立并有解時(shí)參數(shù)的取值范圍;

          3)根據(jù)“k階局部奇函數(shù)”的定義,轉(zhuǎn)化對任意的實(shí)數(shù),函數(shù)恒為上的“k階局部奇函數(shù)”,為對任意的實(shí)數(shù)恒成立問題,討論二次項(xiàng)系數(shù)是否為零,不為零時(shí)討論恒成立,再令,求解,即可.

          (1)上的“2階局部奇函數(shù)”等價(jià)于關(guān)于x的方程上有解,即:,

          化簡得:,

          解得:

          所以上的“2階局部奇函數(shù)”.

          (2)由上的“1階局部奇函數(shù)”,

          要滿足,所以.

          因?yàn)?/span>上的“1階局部奇函數(shù),等價(jià)于關(guān)于x的方程

          有解,即,化簡得:

          所以,

          ,所以.

          (3)因?yàn)?/span>恒為R上的“k階局部奇函數(shù)”等價(jià)于關(guān)于x的方程恒有解.

          ,化簡得:

          當(dāng)時(shí),解得,所以滿足題意;

          當(dāng)時(shí),,即:對任意的實(shí)數(shù)恒成立,

          對任意的實(shí)數(shù)恒成立,

          ,是關(guān)于t的一次函數(shù)且為上的增函數(shù)

          ,即:,解得:

          綜上,整數(shù)k取值的集合.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角中,,分別為內(nèi)角,,所對的邊,且滿足

          (Ⅰ)求角的大;

          (Ⅱ)若,,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓M: ,直線l,下面五個命題,其中正確的是(

          A.對任意實(shí)數(shù)kθ,直線l和圓M有公共點(diǎn);

          B.對任意實(shí)數(shù)kθ,直線l與圓M都相離;

          C.存在實(shí)數(shù)kθ,直線l和圓M相離;

          D.對任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切:

          E.對任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù),若存在定義域中的實(shí)數(shù),滿足,則稱函數(shù)函數(shù).

          1)試判斷,是否是函數(shù),并說明理由;

          2)若函數(shù),函數(shù),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬元,除塵后當(dāng)日產(chǎn)量時(shí),總成本

          1)求的值;

          2)若每噸產(chǎn)品出廠價(jià)為48萬元,試求除塵后日產(chǎn)量為多少時(shí),每噸產(chǎn)品的利潤最大,最大利潤為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面,,,為線段上一點(diǎn),,的中點(diǎn).

          1)證明:平面

          2)求點(diǎn)到平面的距離;

          3)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓,右頂點(diǎn)是,離心率為.

          (1)求橢圓的方程;

          (2)若直線與橢圓交于兩點(diǎn)(不同于點(diǎn)),若,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校有初級教師21人,中級教師14人,高級教師7人,現(xiàn)采用分層抽樣的方法從這些教師中抽取6人對績效工資情況進(jìn)行調(diào)查.

          (1)求應(yīng)從初級教師,中級教師,高級教師中分別抽取的人數(shù);

          (2)若從抽取的6名教師中隨機(jī)抽取2名做進(jìn)一步數(shù)據(jù)分析,求抽取的2名均為初級教師的概率。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,,函數(shù).

          1)若,且,求的值;

          2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

          3)若關(guān)于的方程上有兩個不同的實(shí)數(shù)根,求正數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案