日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 多面體EABCDF中,底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=1,EA=2.
          (1)求多面體EABCDF的體積;
          (2)若FG⊥EC于G,求證:FG∥面ABCD.
          考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
          專題:空間位置關(guān)系與距離
          分析:(1)首先,連接ED,多面體EABCDF的體積V=VE-PCD+VE-ABCD ,只有分別求解兩個棱錐的體積即可;
          (2)設(shè)AC與BD相交于點O,連結(jié)OG,只需證明四邊形DOGF為平行四邊形即可.
          解答: 解:(1)連接ED,
          ∵EA⊥底面ABCD,F(xiàn)D∥EA,
          ∴FD⊥底面ABCD,
          ∴FD⊥AD,F(xiàn)D∩AD=D,
          ∴AD⊥平面FDC,
          VE-PCD=
          1
          3
          AD•S△FDC=
          1
          3
          ×
          1
          2
          ×1×2×2=
          2
          3
          ,
          VE-ABCD=
          1
          3
          EA•S正方形ABCD=
          1
          3
          ×2×2×2=
          8
          3
          ,
          ∴多面體EABCDF的體積V=VE-PCD+VE-ABCD
          =
          2
          3
          +
          8
          3
          =
          10
          3
          ;
          (2)設(shè)AC與BD相交于點O,連結(jié)OG.
          ∵OG是△AEC的中位線∴OG∥AE,且AE=2OG,
          ∵由已知EA=2FD,
          ∴OG∥DF且OG=DF,
          可得平面四邊形DOGF為平行四邊形,
          ∴FG∥OD,
          又∵FG?ABCD,OD?ABCD,
          ∴FG∥面ABCD.
          點評:本題重點考查了空間中直線與直線平行、垂直,直線與平面平行垂直,面面垂直等判定和性質(zhì)定理及其應(yīng)用,空間中棱錐的體積計算等知識,屬于重點題型,注意解決中點問題的一般思路:有中點取中點,相連得到中位線,本題屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項和為Sn,數(shù)列{Mn}滿足條件:M1=S t1,當n≥2時,Mn=S tn-S tn-1,其中數(shù)列{tn}單調(diào)遞增,且tn∈N*
          (1)若an=n,
          ①試找出一組t1、t2、t3,使得M22=M1M3;
          ②證明:對于數(shù)列an=n,一定存在數(shù)列{tn},使得數(shù)列{Mn}中的各數(shù)均為一個整數(shù)的平方;
          (2)若an=2n-1,是否存在無窮數(shù)列{tn},使得{Mn}為等比數(shù)列.若存在,寫出一個滿足條件的數(shù)列{tn};若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          m
          =(cos
          x
          2
          ,-1),
          n
          =(
          3
          sin
          x
          2
          ,cos2
          x
          2
          ),設(shè)函數(shù)f(x)=
          m
          n
          +
          1
          2

          (1)若x∈[0,
          π
          2
          ],f(x)=
          3
          3
          ,求cosx的值;
          (2)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿足2acosB≤2c-
          3
          b.求f(A)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某高校為了了解參加該校自主招生考試的男女生數(shù)學(xué)成績的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們數(shù)學(xué)成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
          (Ⅰ)若該班男女生平均分數(shù)相等,求x的值;
          (Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該5名女生中隨機抽取2名,求至少有一人數(shù)學(xué)成績優(yōu)秀的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          現(xiàn)有8個質(zhì)量和外形一樣的球,其中A1,A2,A3為紅球的編號,B1,B2,B3為黃球的編號,C1,C2為藍球的編號,從三種顏色的球中分別選出一個球,放到一個盒子內(nèi).
          (1)求紅球A1被選中的概率;
          (2)求黃球B1和藍球C1不全被選中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          3
          sinxcosx-cos2x+
          1
          2

          (1)寫出f(x)的最小正周期T;
          (2)求由y=f(x)(0≤x≤
          6
          ),y=0(0≤x≤
          6
          ),x=
          6
          (-1≤y≤0)以及x=0(-
          1
          2
          ≤y≤0)圍成的平面圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項和為Sn,且滿足:Sn=
          1
          2
          n2+
          1
          2
          n.數(shù)列{bn}滿足b1=1,2bn-bn-1=0(n≥2,n∈N*).
          (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
          (Ⅱ)設(shè)cn=anbn,數(shù)列{cn}的前n項和為Tn,證明:1≤Tn<4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          求過原點且與函數(shù)f(x)=
          lnx
          x
          圖象相切的直線方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若直線l:2ax-by+2=0(a>0,b>0)與x軸相交于點A,與y軸相交于B,被圓x2+y2+2x-4y+1=0截得的弦長為4,則|OA|+|OB|(O為坐標原點)的最小值為
           

          查看答案和解析>>

          同步練習(xí)冊答案