日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系xOy中,已知橢圓 + =1(a>b>0)與雙曲線 ﹣y2=1有相同的焦點F1 , F2 , 拋物線x2=2py(p>0)的焦點為F,且與橢圓在第一象限的交點為M,若|MF1|+|MF2|=2

          (1)求橢圓的方程;
          (2)若|MF|= ,求拋物線的方程.

          【答案】
          (1)解:由條件得 ,解得a= ,b= ,

          ∴橢圓方程為 =1


          (2)解:設(shè)M(x0,y0),則|MF|=y0+ = ,即p= ﹣2y0,

          又M在橢圓上,

          ∴x02+3y02=6,且x02=2py0

          ∴(7﹣4y0)y0+3y02=6,解得y0=1或y0=6(舍),

          ∴p= ,

          ∴拋物線方程為x2=3y


          【解析】(1)根據(jù)橢圓定義可知|MF1|+|MF2|=2a;(2)根據(jù)拋物線x2=2py(p0)上的點(x0,y0)到焦點的距離d=y0+將y0用p表示,然后將(x0,y0)分別代入橢圓方程及拋物線方程,聯(lián)立組成方程組.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=x2+bx﹣1(b∈R).
          (1)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
          (2)若函數(shù)y=|f(x)|﹣2有四個零點,求b的取值范圍;
          (3)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx+ ,其中a為大于零的常數(shù)..
          (1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
          (2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
          (3)求證:對于任意的n∈N* , 且n>1時,都有l(wèi)nn> + +…+ 成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平行四邊形ABCD的三個頂點的坐標為A(﹣1,5),B(﹣2,﹣1),C(2,3).

          (1)求平行四邊形ABCD的頂點D的坐標;
          (2)在△ACD中,求CD邊上的高所在直線方程;
          (3)求四邊形ABCD的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中,a1=1,a2=4,a3=10,若{an+1﹣an}是等比數(shù)列,則 i=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:

          (1)求該班全體男生的人數(shù);

          (2)求分數(shù)在之間的男生人數(shù),并計算頻率公布直方圖中之間的矩形的高;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
          (Ⅱ)若 = ,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系中,已知圓的方程是

          )如果圓與直線沒有公共點,求實數(shù)的取值范圍;

          )如果圓過坐標原點,過點直線與圓交于, 兩點,記直線的斜率的平方為,對于每一個確定的,當的面積最大時,用含的代數(shù)式表示,并求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若點O和點F2(﹣ ,0)分別為雙曲線 =1(a>0)的中心和左焦點,點P為雙曲線右支上的任意一點,則 的取值范圍為

          查看答案和解析>>

          同步練習(xí)冊答案