日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系中,已知圓的方程是

          )如果圓與直線沒有公共點,求實數(shù)的取值范圍;

          )如果圓過坐標原點,過點直線與圓交于, 兩點,記直線的斜率的平方為,對于每一個確定的,當的面積最大時,用含的代數(shù)式表示,并求的最大值.

          【答案】(1);(2).

          【解析】試題分析:1可得,與直線無公共點,

          ,即所以;(2過坐標原點,可得,圓方程為,圓心,半徑為,設直線的方程為,∴當最大時, 取最大值.只需點到直線的距離,可得,討論兩種情況,可得,兩段分別求出最大值,較大的就是的最大值

          試題解析:( )由可得

          ,表示圓,

          ,即,

          又∵圓與直線無公共點,

          ,即

          綜上,

          ∵圓過坐標原點,

          ,圓方程為

          圓心,半徑為

          時,直線經(jīng)過圓心

          不存在,故

          由題意設直線的方程為,

          的面積為,

          ,

          ∴當最大時, 取最大值.

          ,只需點到直線的距離等于,

          整理得:

          解出

          ①當時, 最大值為,

          此時,即

          ②當時, ,

          上的減函數(shù),

          ∴當最小時, 最大,

          點,則,

          ∴當最大時, 最小,

          ,且,

          ∴當最大時, 取得最大值,即最大,

          ∴當時, 取得最大值

          ∴當面積最大時,直線的斜率

          ,

          綜上, ,

          ∴當時,

          時, 取得最大值

          時,

          ∴綜上所述,

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知一個袋中裝有大小相同的4個紅球,3個白球,3個黃球.若任意取出2個球,則取出的2個球顏色相同的概率是;若有放回地任意取10次,每次取出一個球,每取到一個紅球得2分,取到其它球不得分,則得分數(shù)X的方差為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,已知橢圓 + =1(a>b>0)與雙曲線 ﹣y2=1有相同的焦點F1 , F2 , 拋物線x2=2py(p>0)的焦點為F,且與橢圓在第一象限的交點為M,若|MF1|+|MF2|=2

          (1)求橢圓的方程;
          (2)若|MF|= ,求拋物線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術》中有“今有五人分無錢,令上二人所得與下三人等,問各得幾何?”.其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”這個問題中,甲所得為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在等差數(shù)列{an}中,2a9=a12+13,a2=5,其前n項和為Sn
          (1)求數(shù)列{an}的通項公式;
          (2)求數(shù)列{ }的前n項和Tn , 并證明Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結論:
          ①BD平分∠CBF;
          ②FB2=FDFA;
          ③AECE=BEDE;
          ④AFBD=ABBF.

          所有正確結論的序號是(
          A.①②
          B.③④
          C.①②③
          D.①②④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x3ax-1,若f(x)在(-1,1)上單調(diào)遞減,則a的取值范圍為( )
          A.a≥3
          B.a>3
          C.a≤3
          D.a<3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.

          Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

          Ⅱ)求證;

          Ⅲ)若,求數(shù)集中所有元素的和的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知曲線C1 , C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.
          (Ⅰ)求證: ;
          (Ⅱ)當 時,求點B到曲線C2上的點的距離的最小值.

          查看答案和解析>>

          同步練習冊答案