日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若數(shù)列{an}滿足a11a21,an+2an+an+1,則稱數(shù)列{an}為斐波那契數(shù)列,斐波那契螺旋線是根據(jù)斐波那契數(shù)列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長方形中畫一個(gè)圓心角為90°的扇形,連起來的弧線就是斐波那契螺旋線,如圖所示的7個(gè)正方形的邊長分別為a1,a2,a7,在長方形ABCD內(nèi)任取一點(diǎn),則該點(diǎn)不在任何一個(gè)扇形內(nèi)的概率為(

          A.1B.1C.D.

          【答案】D

          【解析】

          由題意求得數(shù)列的前8項(xiàng),求得長方形的面積,再求出6個(gè)扇形的面積和,由測(cè)度比是面積比得答案.

          由題意可得,數(shù)列的前8項(xiàng)依次為:1,1,2,3,5,813,21

          長方形的面積為

          6個(gè)扇形的面積之和為

          所求概率

          故選:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成AB兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評(píng)分,B組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖莖葉圖:

          根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段創(chuàng)文工作滿意度評(píng)分的平均值及集中程度不要求計(jì)算出具體值,給出結(jié)論即可;

          根據(jù)群眾的評(píng)分將滿意度從低到高分為三個(gè)等級(jí):

          滿意度評(píng)分

          低于70分

          70分到89分

          不低于90分

          滿意度等級(jí)

          不滿意

          滿意

          非常滿意

          由頻率估計(jì)概率,判斷該市開展創(chuàng)文工作以來哪個(gè)階段的民眾滿意率高?說明理由.

          完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?

          低于70分

          不低于70分

          第一階段

          第二階段

          附:

          k

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】故宮博物院五一期間同時(shí)舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個(gè)展覽.某同學(xué)決定在五一當(dāng)天的上、下午各參觀其中的一個(gè),且至少參觀一個(gè)畫展,則不同的參觀方案共有

          A. 6 B. 8 C. 10 D. 12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          (Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)方程有3個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍;

          (Ⅲ)當(dāng)時(shí),若對(duì)于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為t為參數(shù)),直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.

          1)寫出曲線C的極坐標(biāo)方程和直線的參數(shù)方程;

          2)若直線l與曲線C交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=xex,gx)=alnx+x.

          1)當(dāng)ae時(shí),求證:fxgx)恒成立;

          2)當(dāng)a0時(shí),求證:fxgx+1恒有解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是橢圓的左右頂點(diǎn),點(diǎn)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且.

          1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;

          2)在(1)的條件下,若過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的多面體中,EA⊥平面ABC,DB⊥平面ABCACBC,CMAB,垂足為M,且AEAC2BD2BC4,

          1)求證:CMME

          2)求二面角AMCE的余弦值.

          3)在線段DC上是否存在一點(diǎn)N,使得直線BN∥平面EMC,若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線.

          (1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;

          (2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案