【題目】函數(shù),則下列結(jié)論中不正確的是( )
A.曲線存在對稱中心B.曲線
存在對稱軸
C.函數(shù)的最大值為
D.
【答案】A
【解析】
求得函數(shù)的對稱軸、最值來判斷BC選項的正確選,利用放縮法判斷D選項的正確性,利用反證法判斷A選項的結(jié)論錯誤.
,故曲線
關(guān)于
對稱,故B正確;
由于,
當(dāng)時,分母
取得最小值2,此時分子剛好取得最大值1,故函數(shù)
的最大值為
,故C正確.
畫出的圖像如下圖所示,由圖可知
.
所以,故D正確.
由于,所以
不是奇函數(shù),圖像不關(guān)于原點對稱.而
,所以原點在函數(shù)
圖像上.
假設(shè)A選項正確,即存在點(
為常數(shù))是
的對稱中心,由上述分析可知
不是原點.則原點
關(guān)于
的對稱點為
,
即①,
由于,所以
在函數(shù)
圖像上,
關(guān)于
的對稱點為
,
即②,
由①②得,
則,
,
其判別式,方程無解.
故不存在是
的對稱中心,所以A選項錯誤.
故選:A
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(1)當(dāng)時,若對任意
均有
成立,求實數(shù)
的取值范圍;
(2)設(shè)直線與曲線
和曲線
相切,切點分別為
,
,其中
.
①求證:;
②當(dāng)時,關(guān)于
的不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求
的單調(diào)區(qū)間和極值點;
(2)若在
單調(diào)遞增,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解該市教師年齡分布情況,對年齡在內(nèi)的5000名教師進(jìn)行了抽樣統(tǒng)計,根據(jù)分層抽樣的結(jié)果,統(tǒng)計員制作了如下的統(tǒng)計表格:
年齡區(qū)間 | ||||
教師人數(shù) | 2000 | 1300 | ||
樣本人數(shù) | 130 |
由于不小心,表格中部分?jǐn)?shù)據(jù)被污染,看不清了,統(tǒng)計員只記得年齡在的樣本人數(shù)比年齡在
的樣本人數(shù)多10,根據(jù)以上信息回答下列問題:
(1)求該市年齡在的教師人數(shù);
(2)試根據(jù)上表做出該市教師按照年齡的人數(shù)頻率分布直方圖,并求該市教師年齡的平均數(shù)及方差
(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,平行四邊形中,
,
,
,
為
中點.將
沿
折起,使平面
平面
,得到如圖②所示的四棱錐
.
(1)求證:平面平面
;
(2)求點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形.
平面
,且
.
(1)求證:平面平面
.
(2)線段上是否存在一點
,使三棱錐
的高
若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由左半橢圓
和圓
在
軸右側(cè)的部分連接而成,
,
是
與
的公共點,點
,
(均異于點
,
)分別是
,
上的動點.
(Ⅰ)若的最大值為
,求半橢圓
的方程;
(Ⅱ)若直線過點
,且
,
,求半橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負(fù)責(zé)職工保費的70%,職工個人負(fù)責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求過點的
的切線方程;
(2)當(dāng)時,求函數(shù)
在
的最大值;
(3)證明:當(dāng)時,不等式
對任意
均成立(其中
為自然對數(shù)的底數(shù),
).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com