日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=
          (1)求f(f( ));
          (2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱x0為f(x)的二階不動點,求函數(shù)f(x)的二階不動點的個數(shù).

          【答案】
          (1)解:∵f(x)=

          ∴f( ))=ln = ,

          ∴f(f( ))=f( )=2﹣2× =1


          (2)解:函數(shù)f(x)= .x∈[0, ),f(x)=2﹣2x∈(1,2],

          x∈[ ,1),f(x)=2﹣2x∈(0,1],

          x∈[1,e],f(x)=lnx∈(0,1),

          ∴f(f(x))= ,

          若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為f(x)的二階不動點,

          所以:x0∈[0, ),ln(2﹣2x0)=x0,由y=ln(2﹣x0),y=x0,圖象可知:

          存在滿足題意的不動點.

          x0∈[ ,1),﹣2+4x0=x0,解得x0= ,滿足題意.

          x0∈[1,e],2﹣2lnx0=x0,即2﹣x0=2lnx0,由y=2﹣x0,y=2lnx0,圖象可知:

          存在滿足題意的不動點.

          函數(shù)f(x)的二階不動點的個數(shù)為:3個


          【解析】(1)利用分段函數(shù),逐步求解函數(shù)值即可.(2)利用分段函數(shù)求出f(f(x0))的解析式,然后通過求解方程得到函數(shù)f(x)的二階不動點的個數(shù).

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示幾何體的三視圖,則該幾何體的表面積為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點,PA=AD=1,AB=2.
          (1)求證:MN∥平面PAD;
          (2)求證:平面PMC⊥平面PCD;
          (3)求點D到平面PMC的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則關于f(x)的說法正確的是(
          A.對稱軸方程是x= +2kπ(k∈Z)
          B.φ=﹣
          C.最小正周期為π
          D.在區(qū)間( )上單調遞減

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知α是第二象限角,且cos(α+π)=
          (1)求tanα的值;
          (2)求sin(α﹣ )sin(﹣α﹣π)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖正方體ABCD﹣A1B1C1D1 , M,N分別為A1D1和AA1的中點,則下列說法中正確的個數(shù)為(
          ①C1M∥AC;
          ②BD1⊥AC;
          ③BC1與AC的所成角為60°;
          ④B1A1、C1M、BN三條直線交于一點.
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若 (acosB+bcosA)=2csinC,a+b=4,且△ABC的面積的最大值為 ,則此時△ABC的形狀為(
          A.銳角三角形
          B.直線三角形
          C.等腰三角形
          D.正三角形

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=3x , g(x)=|x+a|﹣3,其中a∈R. (Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關于直線x=2對稱,求a的值;
          (Ⅱ)給出函數(shù)y=g[f(x)]的零點個數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 與向量 的夾角為θ,且| |=1,| |=
          (1)若 ,求 ;
          (2)若 垂直,求θ.

          查看答案和解析>>

          同步練習冊答案