日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對(duì)于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結(jié)論:
          ①f(x1+x2)=f(x1)f(x2);
          ②f(x1x2)=f(x1)+f(x2);
          >0;
          ④f( )<
          當(dāng)f(x)=2x時(shí),上述結(jié)論中正確的有( )個(gè).
          A.3
          B.2
          C.1
          D.0

          【答案】A
          【解析】解:當(dāng)f(x)=2x時(shí),
          ①f(x1+x2)= = =f(x1)f(x2);①正確;
          由①可知②f(x1x2)=f(x1)+f(x2);不正確;
          >0;說明函數(shù)是增函數(shù),而f(x)=2x是增函數(shù),所以③正確;
          ④f( )< .說明函數(shù)是凹函數(shù),而f(x)=2x是凹函數(shù),所以④正確;
          故選:A.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(1,0),直線l:x=﹣1,點(diǎn)P在直線l上移動(dòng),R是線段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
          (1)求動(dòng)點(diǎn)Q的軌跡的方程;
          (2)記Q的軌跡的方程為E,過點(diǎn)F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點(diǎn)分別為M,N.求證:直線MN必過定點(diǎn)R(3,0).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在直角坐標(biāo)系 xOy 中,圓錐曲線 C 的參數(shù)方程為 為參數(shù)),定點(diǎn) , F1,F2 是圓錐曲線 C 的左,右焦點(diǎn).
          (1)以原點(diǎn)為極點(diǎn)、 x 軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn) F1 且平行于直線AF2 的直線 l 的極坐標(biāo)方程;
          (2)在(1)的條件下,設(shè)直線 l 與圓錐曲線 C 交于 E,F 兩點(diǎn),求弦 EF 的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C的極坐標(biāo)方程為 ,直線l的參數(shù)方程為 (t為常數(shù),t∈R)
          (1)求直線l的普通方程和圓C的直角坐標(biāo)方程;
          (2)求直線l與圓C相交的弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線 為參數(shù)), 為參數(shù)).
          (1)化 , 的方程為普通方程,并說明它們分別表示什么曲線;
          (2)若 上的點(diǎn) 對(duì)應(yīng)的參數(shù)為 , 上的動(dòng)點(diǎn),求 中點(diǎn) 到直線 為參數(shù))距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓 的離心率為, 、為橢圓的左右頂點(diǎn),焦點(diǎn)到短軸端點(diǎn)的距離為2, 、為橢圓上異于、的兩點(diǎn),且直線的斜率等于直線斜率的2倍.

          (Ⅰ)求證:直線與直線的斜率乘積為定值;

          (Ⅱ)求三角形的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1, 在直角梯形中, , , 為線段的中點(diǎn). 沿折起,使平面 平面,得到幾何體,如圖2所示.

          1)求證: 平面;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,橢圓 的離心率為,焦距為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)如圖,動(dòng)直線 交橢圓兩點(diǎn), 是橢圓上一點(diǎn),直線的斜率為,且, 是線段延長線上一點(diǎn),且, 的半徑為, 的兩條切線,切點(diǎn)分別為.求的最大值,并求取得最大值時(shí)直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn). 求證:
          (Ⅰ)直線EF∥平面ACD;
          (Ⅱ)平面EFC⊥平面BCD.

          查看答案和解析>>

          同步練習(xí)冊答案