日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓方程為

          1)設(shè)橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上運(yùn)動(dòng),求的值;

          2)設(shè)直線和圓相切,和橢圓交于、兩點(diǎn),為原點(diǎn),線段分別和圓交于、兩點(diǎn),設(shè)的面積分別為、,求的取值范圍.

          【答案】1;(2.

          【解析】

          1)設(shè)點(diǎn),由該點(diǎn)在橢圓上得出,然后利用距離公式和向量數(shù)量積的坐標(biāo)運(yùn)算求出的值;

          2)分直線的斜率不存在與存在兩種情況討論,在直線的斜率不存在時(shí),可求得,在直線的斜率存在時(shí),設(shè)直線的方程為,設(shè)點(diǎn)、,根據(jù)直線與圓相切,得出,并將直線的方程與橢圓方程聯(lián)立,列出韋達(dá)定理,將表示為的函數(shù),轉(zhuǎn)化為函數(shù)的值域的求解,綜合可得出答案.

          1)由已知,,設(shè),

          ,

          同理,可得,

          結(jié)合,得,故

          2)當(dāng)直線l的斜率不存在時(shí),其方程為,

          由對(duì)稱性,不妨設(shè),此時(shí),故

          若直線的斜率存在,設(shè)其方程為,

          由已知可得,則,

          設(shè)、,將直線與橢圓方程聯(lián)立,

          ,

          由韋達(dá)定理得

          結(jié)合,

          可知

          將根與系數(shù)的關(guān)系代入整理得:

          ,

          結(jié)合,得

          設(shè),

          的取值范圍是

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了我運(yùn)動(dòng),我健康,我快樂的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):

          1)求高一、高二兩個(gè)年級(jí)各有多少人?

          2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為運(yùn)動(dòng)達(dá)人”.

          ①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為運(yùn)動(dòng)達(dá)人的概率;

          ②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為運(yùn)動(dòng)達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)滿足,對(duì)于任意都有,且,另

          1)求函數(shù)的表達(dá)式;

          2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          3)當(dāng)時(shí),判斷函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù),并給予證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“團(tuán)購(gòu)”已經(jīng)滲透到我們每個(gè)人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國(guó)快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長(zhǎng)速度(y%)的數(shù)據(jù)

          1)試計(jì)算2012年的快遞業(yè)務(wù)量;

          2)分別將2013年,2014年,…,2017年記成年的序號(hào)t1,23,4,5;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;

          3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

          附:回歸直線的斜率和截距地最小二乘法估計(jì)公式分別為:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種

          A.60B.90C.120D.150

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查一款手機(jī)的使用時(shí)間,研究人員對(duì)該款手機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

          并對(duì)不同年齡層的市民對(duì)這款手機(jī)的購(gòu)買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

          愿意購(gòu)買該款手機(jī)

          不愿意購(gòu)買該款手機(jī)

          總計(jì)

          40歲以下

          600

          40歲以上

          800

          1000

          總計(jì)

          1200

          1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款手機(jī)的平均使用時(shí)間;

          2)請(qǐng)將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有999%的把握認(rèn)為愿意購(gòu)買該款手機(jī)市民的年齡有關(guān).

          參考公式:,其中

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中,,的中點(diǎn),.

          (Ⅰ)求證:平面;

          (Ⅱ)異面直線所成角的余弦值為,求幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn)直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直AB上一動(dòng)點(diǎn)過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

          (1)若橢圓C經(jīng)過兩點(diǎn)、求橢圓C的方程;

          (2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E并求·的值(O是坐標(biāo)原點(diǎn));

          (3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點(diǎn).

          (1)求橢圓E 的標(biāo)準(zhǔn)方程;

          (2)已知圖中四邊形ABCD 是矩形,且BC4,點(diǎn)M,N分別在邊BC,CD上,AMBN相交于第一象限內(nèi)的點(diǎn)P .①若MN分別是BC,CD的中點(diǎn),證明:點(diǎn)P在橢圓E上;②若點(diǎn)P在橢圓E上,證明:為定值,并求出該定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案