日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】如圖,在矩形中,已知,點、分別在、上,且,將四邊形沿折起,使點在平面上的射影在直線上.

          (I)求證: ;

          (II)求點到平面的距離;

          (III)求直線與平面所成的正弦值.

          【答案】(1)見解析(2)2(3)

          【解析】試題分析:

          (1)由折疊關系可得平面,

          (2)利于題意結合勾股定理列方程組,求解可得點到平面的距離為2;

          (3)做出直線與平面所成的角,結合(1)(2)的結論可得直線與平面所成的正弦值為.

          試題解析:

          解:(1)由于平面, ,又由于,

          平面,

          法一:(2)設, ,過垂直,

          因線段, 在翻折過程中長度不變,根據勾股定理:

          ,可解得,

          線段長度為,即點的平面的距離為

          (2)延長于點,因為

          到平面的距離為點到平面距離的,

          平面的距離為,而,

          直線與平面新角的正弦值為

          法二:(2)如圖,過點,過點平面,分別以、、軸建立空間直角坐標系,設點,由于,

          解得于是,所以線段的長度為

          即點到平面的距離為

          (3)從而,故,

          設平面的一個法向量為,設直線與平面所成角的大小為,

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】如圖,已知M(x0,y0)是橢圓C:=1上的任一點,從原點O向圓M:(x-x0)2+(y-y0)2=2作兩條切線,分別交橢圓于點P,Q.

          (1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值;

          (2)試問|OP|2+|OQ|2是否為定值?若是,求出該值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】(1)已知f(x),求f()的值

          (2)已知-π<x<0,sin(πx)cosx=-.

          ①求sinxcosx的值;②求的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.

          (1)將圓C和直線l的方程化為極坐標方程;

          (2)P是l上的點,射線OP交圓C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,當點P在l上移動時,求點Q軌跡的極坐標方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知,[1,+∞).

          (1)時,判斷函數單調性并證明;

          (2)時,求函數的最小值;

          (3)若對任意[1,+∞),>0恒成立,試求實數的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,已知垂直于以為直徑的圓所在平面,點在線段上,點為圓上一點,且

          (Ⅰ) 求證:

          (Ⅱ) 求二面角余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數,其中為常數.

          (1)若,求曲線在點處的切線方程;

          (2)若,求零點的個數;

          (3)若為整數,且當時, 恒成立,求的最大值.

          (參考數據 ,

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某公司對新研發(fā)的一種產品進行試銷,得到如下數據及散點圖:

          其中, , .

          (1)根據散點圖判斷 哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?

          (2)根據(1)的判斷結果及數據,建立關于的回歸方程(運算過程及回歸方程中的系數均保留兩位有效數字).

          (3)定價為150元/ 時,天銷售額的預報值為多少元?

          附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數,

          (Ⅰ)當時,求函數的單調區(qū)間;

          (Ⅱ)若對任意恒成立,求實數的取值范圍.

          查看答案和解析>>

          同步練習冊答案