日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中a,

          時,若處取得極小值,求a的值;

          時.

          若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;

          若存在實數(shù),使得,求b的取值范圍.

          【答案】(1)-2;(2)①;②.

          【解析】

          (1)代入b的值,求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的極值點,從而求出a的值即可;

          (2)代入a的值,①求出函數(shù)的導數(shù),通過討論b的范圍求出函數(shù)的單調(diào)區(qū)間,從而確定b的范圍即可;

          ②通過討論b的范圍,求出函數(shù)的導數(shù),結(jié)合函數(shù)的單調(diào)性確定b的范圍即可.

          (1)當時,因為,所以.

          因為處取得極小值,所以,解得:.

          此時,,

          時,,單調(diào)遞減,

          時,,單調(diào)遞增.

          所以處取得極小值.

          所以符合題意.

          (2)當時,因為,

          所以.

          .

          ①因為上單調(diào)遞增,所以上恒成立,

          上恒成立.

          時,則,滿足題意.

          時,因為的對稱軸為,

          所以,解得.

          綜上,實數(shù)的取值范圍為.

          時,,與題意不符.

          時,取,則.

          ,則,

          時,,單調(diào)遞增,

          時,單調(diào)遞減,

          所以,即.

          所以,

          所以符合題意.

          時,

          因為遞增且

          所以上恒成立,所以上單調(diào)遞增,

          所以恒成立,與題意不符.

          時,

          因為,,

          由零點存在性原理可知,存在,使得,

          所以當時,單調(diào)遞減,

          ,則,符合題意.

          綜上可知,實數(shù)的取值范圍為.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          1)指出的周期、振幅、初相、對稱軸并寫出該函數(shù)的單調(diào)增區(qū)間;

          2)說明此函數(shù)圖象可由,上的圖象經(jīng)怎樣的變換得到.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】()設(shè)bc分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2bxc=0實根的個數(shù)(重根按一個計).

          (1)求方程x2bxc=0有實根的概率.

          (2)ξ的分布列和數(shù)學期望.

          (3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2bxc=0有實根的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)當時,若函數(shù)恰有一個零點,求的取值范圍;

          (2)當時, 恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】光對物體的照度與光的強度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為均為正常數(shù)如圖,強度分別為8,1的兩個光源AB之間的距離為10,物體P在連結(jié)兩光源的線段AB不含A,若物體P到光源A的距離為x

          試將物體P受到AB兩光源的總照度y表示為x的函數(shù),并指明其定義域;

          當物體P在線段AB上何處時,可使物體P受到A,B兩光源的總照度最?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.

          1)求函數(shù)的解析式;

          2)在中,角、、所對的邊分別為、、,且,,若角滿足,求的取值范圍;

          3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應的函數(shù)記作,已知常數(shù),,且函數(shù)內(nèi)恰有個零點,求常數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )

          A.∥平面B.平面∥平面

          C.直線與直線所成角的大小為D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,摩天輪上的一點時刻距離地面的高度滿足,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時針做勻速轉(zhuǎn)動,每6分鐘轉(zhuǎn)一圈,點的起始位置在摩天輪的最低點.

          1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;

          2)在摩天輪從最低點開始計時轉(zhuǎn)動的一圈內(nèi),有多長時間點P距離地面不低于100米?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).

          1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;

          2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:

          方案一:全場商品打8.5折;

          方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).

          查看答案和解析>>

          同步練習冊答案