【題目】已知函數(shù),其中a,
.
當
時,若
在
處取得極小值,求a的值;
當
時.
若函數(shù)
在區(qū)間
上單調(diào)遞增,求b的取值范圍;
若存在實數(shù)
,使得
,求b的取值范圍.
【答案】(1)-2;(2)①;②
.
【解析】
(1)代入b的值,求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的極值點,從而求出a的值即可;
(2)代入a的值,①求出函數(shù)的導數(shù),通過討論b的范圍求出函數(shù)的單調(diào)區(qū)間,從而確定b的范圍即可;
②通過討論b的范圍,求出函數(shù)的導數(shù),結(jié)合函數(shù)的單調(diào)性確定b的范圍即可.
(1)當時,因為
,所以
.
因為在
處取得極小值,所以
,解得:
.
此時,,
當時,
,
單調(diào)遞減,
當時,
,
單調(diào)遞增.
所以在
處取得極小值.
所以符合題意.
(2)當時,因為
,
所以.
令.
①因為在
上單調(diào)遞增,所以
在
上恒成立,
即在
上恒成立.
當
時,則
,滿足題意.
當
時,因為
的對稱軸為
,
所以,解得
或
.
綜上,實數(shù)的取值范圍為
.
②當
時,
,與題意不符.
當
時,取
,則
.
令,則
,
當時,
,
單調(diào)遞增,
當時,
,
單調(diào)遞減,
所以,即
.
所以,
所以符合題意.
當
時,
因為在
遞增且
所以在
上恒成立,所以
在
上單調(diào)遞增,
所以恒成立,與題意不符.
當
時,
因為,
,
由零點存在性原理可知,存在,使得
,
所以當時,
,
單調(diào)遞減,
取,則
,符合題意.
綜上可知,實數(shù)的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)指出的周期、振幅、初相、對稱軸并寫出該函數(shù)的單調(diào)增區(qū)間;
(2)說明此函數(shù)圖象可由,
上的圖象經(jīng)怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(理)設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率.
(2)求ξ的分布列和數(shù)學期望.
(3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】光對物體的照度與光的強度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為
均為正常數(shù)
如圖,強度分別為8,1的兩個光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上
不含A,
若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當物體P在線段AB上何處時,可使物體P受到A,B兩光源的總照度最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最小正周期為
,且直線
是其圖象的一條對稱軸.
(1)求函數(shù)的解析式;
(2)在中,角
、
、
所對的邊分別為
、
、
,且
,
,若
角滿足
,求
的取值范圍;
(3)將函數(shù)的圖象向右平移
個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的
倍后所得到的圖象對應的函數(shù)記作
,已知常數(shù)
,
,且函數(shù)
在
內(nèi)恰有
個零點,求常數(shù)
與
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長均相等的四棱錐中,
為底面正方形的中心,
,
分別為側(cè)棱
,
的中點,有下列結(jié)論正確的有:( )
A.∥平面
B.平面
∥平面
C.直線與直線
所成角的大小為
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,摩天輪上的一點在
時刻距離地面的高度滿足
,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時針做勻速轉(zhuǎn)動,每6分鐘轉(zhuǎn)一圈,點
的起始位置在摩天輪的最低點
處.
(1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;
(2)在摩天輪從最低點開始計時轉(zhuǎn)動的一圈內(nèi),有多長時間點P距離地面不低于100米?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成5組,分別是
,制成如圖所示的頻率分布直方圖(假設(shè)消費金額均在
元的區(qū)間內(nèi)).
(1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自
元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com