【題目】光對(duì)物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為
均為正常數(shù)
如圖,強(qiáng)度分別為8,1的兩個(gè)光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上
不含A,
若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線段AB上何處時(shí),可使物體P受到A,B兩光源的總照度最?
【答案】(1),
;(2)在連接兩光源的線段
上,距光源
為
處.
【解析】
(1)求出P點(diǎn)受A光源的照度,P點(diǎn)受B光源的照度,求和即可;
(2)求出函數(shù)的解析式,求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
(1)因?yàn)槲矬w到光源
的距離為
,所以物體
到光源
的距離為
.
因?yàn)?/span>在線段
上且不與
,
重合,所以
.
因?yàn)楣鈱?duì)物體的照度與光的強(qiáng)度成正比,與光源距離的平方成反比.
所以點(diǎn)受
光源的照度為:
,
點(diǎn)受
光源的照度為:
,
所以物體受到
,
兩光源的總照度
,
.
(2)因?yàn)?/span>,
.
所以.
令,解得
.
當(dāng)時(shí),
,所以
在
上單調(diào)遞減;
當(dāng)時(shí),
,所以在
上單調(diào)遞增.
因此,當(dāng)時(shí),
取得極小值,且是最小值.
所以在連接兩光源的線段上,距光源
為
處,物體
受到光源
,
的總照度最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,
,
,
,
為
的中點(diǎn).
()求證:
.
()求證:平面
平面
.
()在平面
內(nèi)是否存在
,使得直線
平面
,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
的兩條漸近線與拋物線
的準(zhǔn)線分別交于
,
兩點(diǎn).若雙曲線
的離心率為
,
的面積為
,
為坐標(biāo)原點(diǎn),則拋物線
的焦點(diǎn)坐標(biāo)為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且
,則
;
②函數(shù)是偶函數(shù);
③函數(shù)的一個(gè)對(duì)稱中心是
;
④函數(shù)在
上是增函數(shù),
所有正確命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中a,
.
當(dāng)
時(shí),若
在
處取得極小值,求a的值;
當(dāng)
時(shí).
若函數(shù)
在區(qū)間
上單調(diào)遞增,求b的取值范圍;
若存在實(shí)數(shù)
,使得
,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)
的圖象的兩相鄰對(duì)稱軸間的距離為
.
(1)求的值;
(2)將函數(shù)的圖象向右平移
個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,求函數(shù)
的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,過(guò)點(diǎn)
的直線
(
為參數(shù))與曲線
相交于
兩點(diǎn).
(1)試寫(xiě)出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線
在點(diǎn)
處的切線為
,若
時(shí),
有極值.
(1)求的值;
(2)求在
上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com