【題目】已知函數(shù)為偶函數(shù),且函數(shù)
的圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
.
(1)求的值;
(2)將函數(shù)的圖象向右平移
個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,求函數(shù)
的單調(diào)遞減區(qū)間.
【答案】(1)(2)
.
【解析】
(1)首先利用函數(shù)是偶函數(shù)求得的值,再根據(jù)對(duì)稱(chēng)軸間的距離是半個(gè)周期求
的值,求得解析式后再求
;
(2)首先利用平移,伸縮變換求得函數(shù),再令
,求得函數(shù)的單調(diào)遞減區(qū)間.
(1)因?yàn)?/span>為偶函數(shù),所以
,所以
.又
,所以
,所以
.
有函數(shù) 的圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
,所以
,
所以,所以
,
所以.
(2)將的圖象向右平移
個(gè)單位長(zhǎng)度后,得到函數(shù)
的圖象,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到
的圖象,
所以.
當(dāng),
即時(shí),
單調(diào)遞減.
所以函數(shù)的單調(diào)遞減區(qū)間是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,其中
,
,
.
表示
中所有不同值的個(gè)數(shù).
()設(shè)集合
,
,分別求
和
.
()若集合
,求證:
.
()
是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績(jī)、高中學(xué)業(yè)水平考試成績(jī),參考高中學(xué)生綜合素質(zhì)評(píng)價(jià)信息”進(jìn)行人才選拔。我校2018級(jí)高一年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某商場(chǎng)銷(xiāo)售的商品A進(jìn)行市場(chǎng)銷(xiāo)售量調(diào)研,通過(guò)對(duì)該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷(xiāo)售量(單位:百件)與銷(xiāo)售價(jià)格
(元/件)近似滿(mǎn)足關(guān)系式
,其中
為常數(shù)
已知銷(xiāo)售價(jià)格為3元/件時(shí),每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請(qǐng)你試確定該商品銷(xiāo)售價(jià)格的值,使該商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光對(duì)物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為
均為正常數(shù)
如圖,強(qiáng)度分別為8,1的兩個(gè)光源A,B之間的距離為10,物體P在連結(jié)兩光源的線(xiàn)段AB上
不含A,
若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線(xiàn)段AB上何處時(shí),可使物體P受到A,B兩光源的總照度最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的兩條相鄰對(duì)稱(chēng)軸之間的距離為
.
(1)求的值;
(2)將函數(shù)的圖象向左平移
個(gè)單位,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,若函數(shù)
在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的四棱錐中,
為底面正方形的中心,
,
分別為側(cè)棱
,
的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面
B.平面
∥平面
C.直線(xiàn)與直線(xiàn)
所成角的大小為
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次摸取獎(jiǎng)票的活動(dòng)中,已知中獎(jiǎng)的概率為,若票倉(cāng)中有足夠多的票則下列說(shuō)法正確的是
A. 若只摸取一張票,則中獎(jiǎng)的概率為
B. 若只摸取一張票,則中獎(jiǎng)的概率為
C. 若100個(gè)人按先后順序每人摸取1張票則一定有2人中獎(jiǎng)
D. 若100個(gè)人按先后順序每人摸取1張票,則第一個(gè)摸票的人中獎(jiǎng)概率最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在
處取得極小值.
(1)求實(shí)數(shù)的值;
(2)設(shè),其導(dǎo)函數(shù)為
,若
的圖象交
軸于兩點(diǎn)
且
,設(shè)線(xiàn)段
的中點(diǎn)為
,試問(wèn)
是否為
的根?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com