日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某人要利用無人機(jī)測量河流的寬度,如圖,從無人機(jī)A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時無人機(jī)的高是60米,則河流的寬度BC等于(

          A.
          B.
          C.
          D.

          【答案】C
          【解析】解:如圖
          由圖可知,∠DAB=15°,
          ∵tan15°=tan(45°﹣30°)=2﹣
          在Rt△ADB中,又AD=60,
          ∴DB=ADtan15°=60×(2﹣ )=120﹣60
          在Rt△ADC中,∠DAC=60°,AD=60,
          ∴DC=ADtan60°=60
          ∴BC=DC﹣DB=60 ﹣(120﹣60 )=120( ﹣1)(m).
          ∴河流的寬度BC等于120( ﹣1)m.
          故選:C.
          由題意畫出圖形,由兩角差的正切求出15°的正切值,然后通過求解兩個直角三角形得到DC和DB的長度,作差后可得答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需日相逢.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);
          (I)求異面直線A1B,AC1所成角的余弦值;
          (II)求直線AB1與平面C1AD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.

          (1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
          (2)若E是PC的中點(diǎn),F(xiàn)是AD上的動點(diǎn),問AF為何值時,EF⊥平面PBC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】比較下列各組數(shù)中兩個數(shù)的大小.
          (1) ;
          (2)3 與3.1 ;
          (3) ;
          (4)0.20.6與0.30.4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2x . (Ⅰ)若f(x)=2,求x的值;
          (Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+ (x>0).
          (1)求函數(shù)g(x)的最小值及取得最小值時x的值;
          (2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實(shí)根;
          (3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
          (1)求f(x)的解析式;
          (2)若關(guān)于x的方程f(x)=x+m有區(qū)間(﹣1,2)上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(注:相等的實(shí)數(shù)根算一個).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
          (1)當(dāng)a=1時,求不等式f(x)≤g(x)的解集;
          (2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案