日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.

          (1)若E,F(xiàn)分別是PC,AD的中點,證明:EF∥平面PAB;
          (2)若E是PC的中點,F(xiàn)是AD上的動點,問AF為何值時,EF⊥平面PBC.

          【答案】
          (1)解:如圖示:

          底面ABCD是正方形對角線相交于O,

          則O是AC、BD的中點,OE∥PA,OF∥AB,

          ∴平面OEF∥平面PAB,

          EF平面OEF,

          ∴EF∥平面PAB


          (2)解:當AF=1時,OF⊥AD,即BC⊥OF,

          此時,∵PA⊥平面ABCD,∴PA⊥BC,

          ∴EO⊥BC,∴BC⊥平面EOF,

          BC平面PBC,

          ∴平面EOF⊥平面PBC


          【解析】(1)由線線平行得到線面平行,從而證明出線面平行;(2)根據線面垂直證出面面垂直即可.
          【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知拋物線y2=2px(p>0)的焦點為(1,0),A,B是拋物線上位于x軸兩側的兩動點,且 =﹣4(O為坐標原點).
          (1)求拋物線方程;
          (2)證明:直線AB過定點T;
          (3)過點T作AB的垂線交拋物線于M,N兩點,求四邊形AMBN的面積的最小值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數據的平均值和方差分別為(
          A.9.4,0.484
          B.9.4,0.016
          C.9.5,0.04
          D.9.5,0.016

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD, ,

          (1)當 時,求證:BM∥平面ADEF;
          (2)若平面BDM與平面ABF所成銳角二面角的余弦值為 時,求λ的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知長方體ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,則異面直線BD1與AC所成角的余弦值為

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在△ABC中,a,b,c分別是角A、B、C的對邊,且(2a+c)cosB+bcosC=0.
          (Ⅰ)求角B;
          (Ⅱ)若 ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某人要利用無人機測量河流的寬度,如圖,從無人機A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時無人機的高是60米,則河流的寬度BC等于(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在直角坐標系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點P(1,0)作直線分別交射線OA,OB于點A,B.
          (1)當AB的中點在直線x﹣2y=0上時,求直線AB的方程;
          (2)當△AOB的面積取最小值時,求直線AB的方程.
          (3)當PAPB取最小值時,求直線AB的方程.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知a>0,a≠1且loga3>loga2,若函數f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
          (1)求a的值;
          (2)解不等式 ;
          (3)求函數g(x)=|logax﹣1|的單調區(qū)間.

          查看答案和解析>>

          同步練習冊答案