日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方體的棱長(zhǎng)為1PBC的中點(diǎn),Q為線段上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________寫出所有正確命題的編號(hào)

          當(dāng)時(shí),S為四邊形

          當(dāng)時(shí),S為等腰梯形

          當(dāng)時(shí),S的交點(diǎn)R滿足

          當(dāng)時(shí),S為六邊形

          當(dāng)時(shí),S的面積為

          【答案】①②③⑤

          【解析】

          試題分析:如圖當(dāng)CQ=時(shí),即Q為中點(diǎn),此時(shí)可得PQ,AP==,

          故可得截面APQD1為等腰梯形,故正確;

          由上圖當(dāng)點(diǎn)Q向C移動(dòng)時(shí),滿足,只需在DD1上取點(diǎn)M滿足AMPQ,即可得截面為四邊形APQM,故正確;

          當(dāng)CQ=時(shí),如圖,

          延長(zhǎng)DD1至N,使D1N=,連接AN交于S,連接NQ交于R,連接SR,可證ANPQ,由NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正確;

          由上可知當(dāng)<CQ<1時(shí),只需點(diǎn)Q上移即可,此時(shí)的截面形狀仍然上圖所示的APQRS,顯然為五邊形,故錯(cuò)誤;

          當(dāng)CQ=1時(shí),Q與C1重合,取的中點(diǎn)F,連接AF,可證PC1AF,且PC1=AF,

          可知截面為APC1F為菱形,故其面積為AC1PF=,故正確.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是坐標(biāo)原點(diǎn),若橢圓的離心率為,右頂點(diǎn)為,上頂點(diǎn)為,的面積為

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)已知點(diǎn)為橢圓上兩動(dòng)點(diǎn),若有,證明:直線恒過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在直三棱柱中, , , ,點(diǎn)的中點(diǎn).

          (1)求證: 平面;

          (2)求異面直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓?jiān)┊?dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購(gòu)者一次性購(gòu)物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了1月1日100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.

          I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

          II)對(duì)這100名網(wǎng)購(gòu)者進(jìn)一步調(diào)查顯示:購(gòu)物金額在2000元以上的購(gòu)物者中網(wǎng)齡3年以上的有35人,

          購(gòu)物金額在2000元以下(含2000元)的購(gòu)物者中網(wǎng)齡不足3年的有20人,請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并據(jù)

          此判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購(gòu)金額超過2000元與網(wǎng)齡在3年以上有關(guān)?

          參考數(shù)據(jù):

          參考公式:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 過點(diǎn),離心率為,分別為左右焦點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若上存在兩個(gè)點(diǎn),橢圓上有兩個(gè)點(diǎn)滿足三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);

          2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

          3)若是奇函數(shù),且時(shí)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          1若函數(shù)處有極值,求函數(shù)的最大值;

          2①是否存在實(shí)數(shù),使得關(guān)于的不等式上恒成立?若存在,求出的取值范圍;若不存在,說明理由;

          ②證明:不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn)為平面上的動(dòng)點(diǎn),且過點(diǎn)的垂線,垂足為,滿足:

          ()求動(dòng)點(diǎn)的軌跡的方程;

          ()在軌跡上求一點(diǎn),使得到直線的距離最短,并求出最短距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓,圓

          (1)若過點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;

          (2)圓是以1為半徑,圓心在圓上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓 的兩條切線,切點(diǎn)為,求的取值范圍;

          (3)若動(dòng)圓同時(shí)平分圓的周長(zhǎng)、圓的周長(zhǎng),則動(dòng)圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案