【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
為平面上的動(dòng)點(diǎn),且過點(diǎn)
作
的垂線,垂足為
,滿足:
(Ⅰ)求動(dòng)點(diǎn)的軌跡
的方程;
(Ⅱ)在軌跡上求一點(diǎn)
,使得
到直線
的距離最短,并求出最短距離.
【答案】(Ⅰ) (Ⅱ)
【解析】
試題分析:(Ⅰ)將點(diǎn)的坐標(biāo)代入化簡(jiǎn)可得到動(dòng)點(diǎn)
的軌跡
的方程;(Ⅱ)由點(diǎn)到直線的距離公式求得M到直線的距離,結(jié)合函數(shù)性質(zhì)可求得函數(shù)的最小值及取得最小值時(shí)的自變量值即M的坐標(biāo)
試題解析:(Ⅰ)設(shè),
,…………4分,
,
,
所求軌跡為: ………6分
(Ⅱ)法一:設(shè),則
的距離為
,此時(shí)
為所求. ……12分
法二:當(dāng)與直線平行,且與曲線相切時(shí)的切點(diǎn)與與直線
的距離最短.
設(shè)該直線方程為,…… 7分
,解得:
到直線
的距離最短,最短距離為
.……12分
法三:當(dāng)與直線平行,且與曲線相切時(shí)的切點(diǎn)與與直線
的距離最短.
設(shè)切點(diǎn)為,軌跡方程可化為:
,切線斜率為
,
以下方法同法二.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形中,
,
分別在
上,且
,沿
將四邊形
折成四邊形
,使點(diǎn)
在平面
上的射影
在直線
上,且
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線段
上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號(hào))。
①當(dāng)時(shí),S為四邊形
②當(dāng)時(shí),S為等腰梯形
③當(dāng)時(shí),S與
的交點(diǎn)R滿足
④當(dāng)時(shí),S為六邊形
⑤當(dāng)時(shí),S的面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若方程有兩個(gè)小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式對(duì)任意
恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線(
).
(1)證明:直線過定點(diǎn);
(2)若直線不經(jīng)過第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于
,交
軸正半軸于
,△
的面積為
(
為坐標(biāo)原點(diǎn)),求
的最小值,并求此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、
分別為橢圓
:
的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓上的點(diǎn)
到
、
兩點(diǎn)的距離之和等于6,寫出橢圓
的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),求線段
的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
是自然對(duì)數(shù)的底數(shù)),
.
(Ⅰ)求曲線在點(diǎn)
處的切線方程;
(Ⅱ)求的最大值;
(Ⅲ)設(shè),其中
為
的導(dǎo)函數(shù),證明:對(duì)任意
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足:
,當(dāng)
時(shí),
.
(1)求證:為奇函數(shù);
(2)求證:為
上的增函數(shù);
(3)解關(guān)于的不等式:
.(其中
且
為常數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com