【題目】已知函數(shù).
(1)當(dāng),
取一切非負(fù)實(shí)數(shù)時(shí),若
,求
的范圍;
(2)若函數(shù)存在極大值
,求
的最小值.
【答案】(1)(2)
【解析】試題分析:(1)當(dāng)時(shí),
,原題分離參數(shù)得
恒成立,右邊求導(dǎo)求出其最大值即可;(2)對(duì)其求導(dǎo)
,當(dāng)
時(shí),
在
上為單增函數(shù),無(wú)極大值;當(dāng)
時(shí),
在
上為增函數(shù),在
上為減函數(shù),其中
滿足
,故可得極大值
,令
,得
,對(duì)其求導(dǎo)可得其最小值.
試題解析:(1)當(dāng)時(shí),
,
恒成立等價(jià)于
恒成立,令
,
,
,當(dāng)
時(shí),
恒成立,即
在
內(nèi)單調(diào)遞減,故
,可得
在
內(nèi)單調(diào)遞減,故
.
(2),
①當(dāng)時(shí),
,所以
,所以
在
上為單增函數(shù),無(wú)極大值;
②當(dāng)時(shí),設(shè)方程
的根為
,則有
,即
,所以
在
上為增函數(shù),在
上為減函數(shù),所以
的極大值為
,即
,因?yàn)?/span>
,所以
,令
則
,
設(shè),則
,令
,得
,所以
在
上為減函數(shù),在
上為增函數(shù),所以
得最小值為
,即
的最小值為-1,此時(shí)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線
(
為參數(shù)),在以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為:
.
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)過點(diǎn)且與直線平行的直線
交
于
,
兩點(diǎn),求點(diǎn)
到
,
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
,短軸的兩個(gè)端點(diǎn)分別為
.
(Ⅰ)若為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓的短軸長(zhǎng)為
,過點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
,短軸的兩個(gè)端點(diǎn)分別為
.
(Ⅰ)若為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓的短軸長(zhǎng)為
,過點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,
平面
,
//
,
,
,
分別為
線段,
的中點(diǎn).
(Ⅰ)求證: //平面
;
(Ⅱ)求證: 平面
;
(Ⅲ)寫出三棱錐與三棱錐
的體積之比.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)為選拔選手參加“中國(guó)漢字聽寫大會(huì)”,某中學(xué)舉行了一次“漢字聽寫大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照
,
,
,
,
的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在
,
的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的
、
的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)漢字聽寫大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com