日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求A∩B,(UA)∪B,A∩(UB).

          【答案】解:如圖所示,

          ∵A={x|﹣2<x<3},B={x|﹣3≤x≤2},
          UA={x|x≤﹣2,或3≤x≤4},UB={x|x<﹣3,或2<x≤4}.
          故A∩B={x|﹣2<x≤2},(UA)∪B={x|x≤2,或3≤x≤4},A∩(UB)={x|2<x<3}
          【解析】全集U={x|x≤4},集合A={x|﹣2<x<3},B={x|﹣3≤x≤2},求出CUA,CUB,由此能求出A∩B,(UA)∪B,A∩(UB).畫數(shù)軸是最直觀的方法.
          【考點(diǎn)精析】掌握交、并、補(bǔ)集的混合運(yùn)算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在四棱錐中,底面是菱形, , 平面,點(diǎn)的中點(diǎn),且.

          (1)證明: ;

          (2)求三棱錐的體積;

          (3)在線段上是否存在一點(diǎn),使得平面;若存在,求出的長;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是等差數(shù)列的前項和,已知, , .

          1)求

          2若數(shù)列,求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x2﹣1)=loga (a>0且a≠1)
          (1)求函數(shù)f(x)的解析式,并判斷f(x)的奇偶性;
          (2)解關(guān)于x的方程f(x)=loga

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng) 取一切非負(fù)實(shí)數(shù)時,若,求的范圍;

          (2)若函數(shù)存在極大值,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為,且雙曲線C與斜率為2的直線l相交,且其中一個交點(diǎn)為P(﹣3,0).

          (1)求雙曲線C的方程及它的漸近線方程;

          (2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線為參數(shù),),其中,在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

          (Ⅰ)求交點(diǎn)的直角坐標(biāo)系;

          (Ⅱ)若相交于點(diǎn),相交于點(diǎn),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知方程表示一個圓.

          (1)求實(shí)數(shù)的取值范圍;

          (2)求該圓半徑的取值范圍;

          (3)求該圓心的縱坐標(biāo)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2+bx+c,
          (1)若函數(shù)f(x)是偶函數(shù),求實(shí)數(shù)b的值
          (2)若函數(shù)f(x)在區(qū)間[﹣1,3]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案