【題目】已知向量,
,函數(shù)
.
(1)求函數(shù)的最小正周期與
圖象的對稱軸方程;
(2)若,
,函數(shù)
的最小值是
,最大值是2,求實(shí)數(shù)
,
的值.
【答案】(1);(2)實(shí)數(shù)
,
的值分別為2,
.
【解析】
(1)先由向量的數(shù)量積及三角恒等變換求出函數(shù)的解析式,再根據(jù)正弦函數(shù)的圖象和性質(zhì),求出函數(shù)
的最小正周期與
圖象的對稱軸方程即可;
(2)先根據(jù)的取值范圍求出
的取值范圍,然后根據(jù)正弦函數(shù)的圖象和性質(zhì)求出函數(shù)
的最值,最后根據(jù)已知條件列出方程組,解之即可得實(shí)數(shù)
,
的值.
(1)由題意得
,
,
所以函數(shù)的最小正周期
.
令,
,解得
,
,
所以函數(shù)圖象的對稱軸方程為
,
.
(2)因?yàn)?/span>,所以
,
因?yàn)?/span>,
所以當(dāng),即
時(shí),函數(shù)
取得最小值,最小值為
,即
,
當(dāng),即
時(shí),函數(shù)
取得最大值,最大值為
,即
,
所以,
解得.
故實(shí)數(shù),
的值分別為2,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖過拋物線的焦點(diǎn)
的直線依次交拋物線及準(zhǔn)線于點(diǎn)
,若
,且
,則
( )
A.2B.C.3D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)以的邊
為長軸且過點(diǎn)
的橢圓
的方程為
橢圓
的離心率
,
面積的最大值為
,
和
所在的直線分別與直線
相交于點(diǎn)
,
.
(1)求橢圓的方程;
(2)設(shè)與
的外接圓的面積分別為
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)
處的切線方程為
.
(1)求,
;
(2)函數(shù)圖像與
軸負(fù)半軸的交點(diǎn)為
,且在點(diǎn)
處的切線方程為
,函數(shù)
,
,求
的最小值;
(3)關(guān)于的方程
有兩個(gè)實(shí)數(shù)根
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)號為1,2,3的三位小學(xué)生,在課余時(shí)間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點(diǎn)數(shù)除以3,若學(xué)號與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開始向上爬,且樓梯數(shù)足夠多.
(1)經(jīng)過2次投擲骰子后,學(xué)號為1的同學(xué)站在第X階樓梯上,試求X的分布列;
(2)經(jīng)過多次投擲后,學(xué)號為3的小學(xué)生能站在第n階樓梯的概率記為,試求
,
,
的值,并探究數(shù)列
可能滿足的一個(gè)遞推關(guān)系和通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長為2,離心率為
.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為
,把滿足條件
的所有數(shù)列
構(gòu)成的集合記為
.
(1)若數(shù)列的通項(xiàng)為
,則
是否屬于
?
(2)若數(shù)列是等差數(shù)列,且
,求
的取值范圍;
(3)若數(shù)列的各項(xiàng)均為正數(shù),且
,數(shù)列
中是否存在無窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列
的通項(xiàng);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)點(diǎn)在橢圓
上,過點(diǎn)
作
軸的垂線,垂足為
,點(diǎn)
滿足
,已知點(diǎn)
的軌跡是過點(diǎn)
的圓.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
,
兩點(diǎn)(
,
在
軸的同側(cè)),
,
為橢圓的左、右焦點(diǎn),若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周禮夏官馬質(zhì)》中記載“馬量三物:一日戎馬,二日田馬,三日駑馬”,其意思為馬按照品種可以分為三個(gè)等級,一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設(shè)在唐朝的某個(gè)王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數(shù)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com