【題目】已知函數(shù),
為偶函數(shù),且當
時,
.記
.給出下列關于函數(shù)
的說法:①當
時,
;②函數(shù)
為奇函數(shù);③函數(shù)
在
上為增函數(shù);④函數(shù)
的最小值為
,無最大值.其中正確的是______.
【答案】①③
【解析】
g(x),F(x)=max{f(x),g(x)}(x∈R)
.畫出圖象,數(shù)形結(jié)合即可得出.
由為偶函數(shù),且當
時,
,
∴令,則
,則
,
即當時,
,
∴g(x),
F(x)=max{f(x),g(x)}(x∈R).
畫出圖象,
由圖象可得:①當x≥6時,∵x2﹣4x≥2x,∴F(x)=x2﹣4x,因此正確.
②由圖象可得:函數(shù)F(x)不為奇函數(shù),因此不正確.
③﹣2≤x≤6時,2x>x2﹣4x,可得函數(shù)F(x)=2x,因此函數(shù)F(x)在[﹣2,6]上為增函數(shù),所以函數(shù)F(x)在[﹣2,2]上為增函數(shù)是正確的.
④x≤﹣2時,g(x)=x2+4x≥2x,可得F(x)=x2+4x≥﹣4,綜合可得函數(shù)F(x)的最小值為﹣4,無最大值,④不正確.
其中正確的是 ①③.
故答案為①③.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 = (1,2sinθ),
= (sin(θ+
),1),θ
R。
(1) 若⊥
,求 tanθ的值;
(2) 若∥
,且 θ
(0,
),求 θ的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 |
儲蓄存款 | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關于的回歸方程
,并預測該地區(qū)2019年的人民幣儲蓄存款(用最簡分數(shù)作答).
(2)在含有一個解釋變量的線性模型中,恰好等于相關系數(shù)
的平方,當
時,認為線性回歸模型是有效的,請計算
并且評價模型的擬合效果(計算結(jié)果精確到
).
附:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下圖是趙爽弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.由2勾
股
(股
勾)2
4
朱實
黃實
弦實,化簡得勾2
股2
弦2.若圖中勾股形的勾股比為
,若向弦圖內(nèi)隨機拋擲2000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):
)
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評.同時也為公司贏得豐厚的利潤,該公司2013年至2019年的年利潤關于年份代號
的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關)
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年利潤 | 29 | 33 | 36 | 44 | 48 | 52 | 59 |
(1)求關于
的線性回歸方程,并預測該公司2020年的年利潤;
(2)當統(tǒng)計表中某年年利潤的實際值大于由(1)中線性回歸方程計算出該年利潤的估計值時,稱該年為A級利潤年,否則稱為B級利潤年.現(xiàn)從2015年至2019年這5年中隨機抽取2年,求恰有1年為A級利潤年的概率.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于古典概型的說法中正確的是( )
①試驗中所有可能出現(xiàn)的基本事件只有有限個;
②每個事件出現(xiàn)的可能性相等;
③每個基本事件出現(xiàn)的可能性相等;
④基本事件的總數(shù)為n,隨機事件A若包含k個基本事件,則.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足
(其中
是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:
(1)將利潤表示為月產(chǎn)量的函數(shù)
;
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為橢圓
的左焦點,直線
被橢圓
截得弦長為
.
(1)求橢圓的方程;
(2)圓與橢圓
交于
兩點,
為線段
上任意一點,直線
交橢圓
于
兩點
為圓
的直徑,且直線
的斜率大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,焦距為
,拋物線
:
的焦點
是橢圓
的頂點.
(1)求與
的標準方程;
(2)上不同于
的兩點
,
滿足
,且直線
與
相切,求
的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com