日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)拋物線上一點到焦點的距離為5

          1)求拋物線的方程;

          2)過點的直線與拋物線交于兩點, 過點作直線的垂線,垂足為,判斷:三點是否共線,并說明理由.

          【答案】1;(2三點共線,理由見解析

          【解析】

          1)解法一,利用焦半徑公式直接求得值,解法二,根據(jù)點在拋物線上和兩點間的距離,列方程組求解;(2)解法一,分直線的斜率不存在和存在兩種情況,斜率不存在時和斜率存在時,利用直線方程和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系驗證,說明三點共線,解法二,設(shè)直線與拋物線方程聯(lián)立,利用說明三點共線,解法三,設(shè)直線與拋物線方程聯(lián)立,利用,說明三點共線.

          1)解法1: 由已知得 ,

          拋物線的方程為

          解法2: 由已知得

          解得

          拋物線的方程為

          2)解法1: 易知直線的斜率為0. 直線與拋物線交于一點,不合題意.

          (1)當(dāng)直線的斜率不存在時,則,

          ,.

          ,

          三點共線

          (2)當(dāng)直線的斜率存在時,設(shè):.

          ,整理得

          設(shè),,

          .

          ,

          三點共線.

          綜上(1) (2)三點共線

          2)解法2: 易知直線的斜率為0. 直線與拋物線交于一點,不合題意.

          可設(shè)直線.

          ,.

          設(shè),則

          ,

          ,

          三點共線

          2)解法3: 易知直線的斜率為0. 直線與拋物線交于一點,不合題意.

          可設(shè)直線.

          ,.

          設(shè),則

          ,

          有公共點,

          三點共線

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于多項式的展開式,下列結(jié)論正確的是(

          A.各項系數(shù)之和為1B.各項系數(shù)的絕對值之和為

          C.不存在常數(shù)項D.的系數(shù)為40

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高二年級共有800名學(xué)生參加了數(shù)學(xué)測驗(滿分150分),已知這800名學(xué)生的數(shù)學(xué)成績均不低于90分,將這800名學(xué)生的數(shù)學(xué)成績分組如:,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是( )

          ;②這800名學(xué)生中數(shù)學(xué)成績在110分以下的人數(shù)為160; ③這800名學(xué)生數(shù)學(xué)成績的中位數(shù)約為121.4;④這800名學(xué)生數(shù)學(xué)成績的平均數(shù)為125.

          A.①②B.②③C.②④D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點為A,直線l經(jīng)過Ω在y軸正半軸上的頂點B且與直線OA(O為坐標(biāo)原點)垂直,l與Ω的另一個交點為C,l與W交于M,N兩點.

          (1)求W的標(biāo)準(zhǔn)方程:

          (2)求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列三個命題:

          ①函數(shù)的單調(diào)增區(qū)間是

          ②經(jīng)過任意兩點的直線,都可以用方程來表示;

          ③命題:“ ,”的否定是“”,

          其中正確命題的個數(shù)有( )個

          A. 0 B. 1 C. 2 D. 3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)|xa|.

          (1)當(dāng)a2時,解不等式f(x)≥4|x1|;

          (2)f(x)≤1的解集為[0,2](m>0,n>0),求證:m2n≥4.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點

          (Ⅰ)求證:⊥平面;

          (Ⅱ)求證:直線∥平面

          (Ⅲ)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)若函數(shù)有兩個零點,求的取值范圍,并證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

          (1)證明:平面PAB⊥平面PAD;

          (2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

          查看答案和解析>>

          同步練習(xí)冊答案