日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)在圓內(nèi)直徑所對(duì)的圓周角是直角.此定理在橢圓內(nèi)(以焦點(diǎn)在軸上的標(biāo)準(zhǔn)形式為例)可表述為“過(guò)橢圓的中心的直線交橢圓于兩點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),當(dāng)直線,斜率存在時(shí),它們之積為定值.”試求此定值;

          (2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.

          【答案】(1)定值為 (2)見(jiàn)證明

          【解析】

          1)設(shè),,由橢圓的對(duì)稱性可知,由兩點(diǎn)間的斜率坐標(biāo)表示及點(diǎn)在橢圓上的等量關(guān)系化簡(jiǎn)可得解;

          (2)類比第一問(wèn),利用坐標(biāo)運(yùn)算求解即可.

          (1)設(shè),,由橢圓的對(duì)稱性可知

          ∵直線,的斜率存在,

          又∵在橢圓上

          將②代入①得

          故此定值為.

          (2)此定理在橢圓內(nèi)可表述為:

          為橢圓的任意一條存在斜率的弦,的中點(diǎn)為,為坐標(biāo)原點(diǎn).當(dāng)直線的斜率存在時(shí),直線與直線的斜率之積為定值.

          設(shè),,則

          又∵在橢圓上

          將②代入①得

          故此定值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn), 為橢圓:上異于點(diǎn)A,B的任意一點(diǎn).

          Ⅰ)求證:直線、的斜率之積為-;

          Ⅱ)是否存在過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方體的棱長(zhǎng)為4,M為底面ABCD兩條對(duì)角線的交點(diǎn),P為平面內(nèi)的動(dòng)點(diǎn),設(shè)直線PM與平面所成的角為,直線PD與平面所成的角為,則動(dòng)點(diǎn)P的軌跡長(zhǎng)度為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面為平行四邊形,已知,,.

          (1)求證:

          (2)若平面平面,且,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了測(cè)量某塔的高度,某人在一條水平公路兩點(diǎn)進(jìn)行測(cè)量.在點(diǎn)測(cè)得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進(jìn)10米到點(diǎn),測(cè)得塔頂?shù)难鼋菫?/span>,則塔的高度為( )

          A. 5米B. 10米C. 15米D. 20米

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒到19秒之間,下圖是這次測(cè)試成績(jī)的頻率分布直方圖.設(shè)成績(jī)小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為x,成績(jī)大于等于15秒且小于17秒的學(xué)生人數(shù)為y,則x和y分別為(  )

          A. 10%,45B. 90%,45C. 10%,35D. 90%,35

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平面向量滿足:||2||1

          1)若(2)=1,求的值;

          2)設(shè)向量,的夾角為θ.若存在tR,使得,求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校為了解甲、乙兩班學(xué)生的學(xué)業(yè)水平,從兩班中各隨機(jī)抽取人參加學(xué)業(yè)水平等級(jí)考試,得到學(xué)生的學(xué)業(yè)成績(jī)莖葉圖如圖:

          Ⅰ)通過(guò)莖葉圖比較甲、乙兩班學(xué)生的學(xué)業(yè)成績(jī)平均值及方差的大小;(只需寫出結(jié)論)

          (Ⅱ)根據(jù)學(xué)生的學(xué)業(yè)成績(jī),將學(xué)業(yè)水平分為三個(gè)等級(jí):

          根據(jù)所給數(shù)據(jù),頻率可以視為相應(yīng)的概率.

          i)從甲、乙兩班中各隨機(jī)抽取,記事件:“抽到的甲班學(xué)生的學(xué)業(yè)水平高于乙班學(xué)生的學(xué)業(yè)水平等級(jí)”,發(fā)生的概率;

          ii從甲班中隨機(jī)抽取,為學(xué)業(yè)水平優(yōu)秀的人數(shù),的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x2bxc(b,cR),對(duì)任意的xR,恒有f′(x)≤f(x).

          (1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2;

          (2)若對(duì)滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案