日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列都是等差數(shù)列,.數(shù)列滿足.

          1)求的通項(xiàng)公式;

          2)證明:是等比數(shù)列;

          3)是否存在首項(xiàng)為1,公比為q的等比數(shù)列,使得對任意,都有成立?若存在,求出q的取值范圍;若不存在,請說明理由.

          【答案】1;(2)證明見解析;(3)存在,.

          【解析】

          1)設(shè)的公差為d,可得, 由是等差數(shù)列,可得成等差數(shù)列,可得,求出的值,可得的通項(xiàng)公式;

          2)將展開,可得,將代入此式子相減,可得,再將代入此式子相減,可得,此時,驗(yàn)證時也滿足可得是等比數(shù)列;

          3)設(shè)存在對任意,都有恒成立,即,,易得,由由得,,可得設(shè),對其求導(dǎo),可得其最小值,可得q的取值范圍.

          解:(1)因?yàn)閿?shù)列是等差數(shù)列,設(shè)的公差為d,則

          ,

          因?yàn)?/span>是等差數(shù)列,所以成等差數(shù)列,

          ,,

          解得,當(dāng)時,,此時是等差數(shù)列.

          .

          2)由,即, ①

          所以, ②

          ②-①得,, ③

          所以,, ④

          ④-③得,,即時,,

          在①中分別令得,,也適合上式,

          所以,

          因?yàn)?/span>是常數(shù),所以是等比數(shù)列.

          3)設(shè)存在對任意,都有恒成立,

          ,,

          顯然,由可知,,

          得,,.

          設(shè),因?yàn)?/span>,

          所以當(dāng)時,,遞增;

          當(dāng)時,遞減.

          因?yàn)?/span>,所以,

          解得,

          綜上可得,存在等比數(shù)列,使得對任意,都有恒成立, 其中公比的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其圖象與軸交于不同兩點(diǎn),,且.

          1)求實(shí)數(shù)的取值范圍;

          2)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)且).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

          1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

          2)若點(diǎn)在直線上,點(diǎn)在曲線上,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

          (1)球橢圓的方程;

          (2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直四棱柱ABCDA1B1C1D1中,AD//平面BCC1B1ADDB.求證:

          1BC//平面ADD1A1

          2)平面BCC1B1⊥平面BDD1B1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某人某天的工作是:駕車從地出發(fā),到兩地辦事,最后返回地,三地之間各路段行駛時間及當(dāng)天降水概率如表:

          路段

          正常行駛所需時間(小時)

          上午降水概率

          下午降水概率

          2

          0.3

          0.6

          2

          0.2

          0.7

          3

          0.3

          0.9

          若在某路段遇到降水,則在該路段行駛的時間需延長1小時,現(xiàn)有如下兩個方案:

          方案甲:上午從地出發(fā)到地辦事,然后到達(dá)地,下午在地辦事后返回地;

          方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達(dá)地, 辦事后返回.

          1)設(shè)此人8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時間為2小時.且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回地的概率;

          2)甲、乙兩個方案中,哪個方案有利于辦完事后能更早返回地?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來的機(jī)遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當(dāng)年產(chǎn)量不足60臺時,萬元;當(dāng)年產(chǎn)量不小于60臺時,萬元若每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

          求年利潤萬元關(guān)于年產(chǎn)量的函數(shù)關(guān)系式;

          當(dāng)年產(chǎn)量為多少臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

          1)求的普通方程和曲線C的直角坐標(biāo)方程;

          2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案