【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在到
之間,將測(cè)量結(jié)果按如下方式分成六組:第1組
,第2組
,…,第6組
,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;
(2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來(lái)自第5組的概率.
【答案】(1)0.12;(2)平均數(shù)為168.72,中位數(shù)為168.25;(3).
【解析】
(1)由直方圖可得,被選取的男生恰好在第5組或第6組的概率;(2)每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)、組距相乘后求和可得平均值;直方圖左右兩邊面積相等處橫坐標(biāo)表示中位數(shù);(3)利用列舉法,從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員共有15種情況,其中選取的兩人中最多有1名男生來(lái)自第5組的情況有9種,由古典概型概率公式可得結(jié)果.
(1)被選取的男生恰好在第5組或第6組的概率
.
(2)全體男生身高的平均數(shù)為
.
設(shè)全體男生身高的中位數(shù)為,因?yàn)榈?/span>1組
對(duì)應(yīng)的頻率為0.20,第2組
對(duì)應(yīng)的頻率為0.28,所以
,則
,解得
.
(3)第5組有人,記為
,
,
,
,同理第6組有2人記為
,
,
所有的情況為、
、
、
、
、
、
、
、
、
、
、
、
、
、
,共15種,
選取的兩人中最多有1名男生來(lái)自第5組的有、
、
、
、
、
、
、
、
共9種,
所以所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線y=5,求:
(1)曲線上與直線y=2x-4平行的切線方程.
(2)求過(guò)點(diǎn)P(0,5),且與曲線相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率;先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3表示沒有擊中目標(biāo), 4、5、6、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),根據(jù)以下數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為( )
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
A.0.4B.0.45C.0.5D.0.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)
的圖象與
軸圍成一個(gè)封閉的區(qū)域
,將區(qū)域
沿
軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域
的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)橢圓E:(a>b>0)的左焦點(diǎn)F1作x軸的垂線交橢圓E于P,Q兩點(diǎn),點(diǎn)A,B是橢圓E的頂點(diǎn),且AB∥OP,F2為右焦點(diǎn),△PF2Q的周長(zhǎng)為8.
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)F1作直線l與橢圓E交于C,D兩點(diǎn),若△OCD的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,
,點(diǎn)
是
中點(diǎn),且
,現(xiàn)將三角形
沿
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
與平面
所成的角為
.
(1)求證:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()求函數(shù)
的極值點(diǎn).
()設(shè)函數(shù)
,其中
,求函數(shù)
在
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱錐放置在以
為直徑的半圓面
上,
為圓心,
為圓弧
上的一點(diǎn),
為線段
上的一點(diǎn),且
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)當(dāng)二面角的平面角為
時(shí),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com