日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [2013·浙江高考]如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是(  )
          A.B.C.D.
          D
          橢圓C1中,|AF1|+|AF2|=4,|F1F2|=2.
          又因?yàn)樗倪呅蜛F1BF2為矩形,
          所以∠F1AF2=90°.
          所以|AF1|2+|AF2|2=|F1F2|2,
          所以|AF1|=2-,|AF2|=2+.
          所以在雙曲線C2中,2c=2,2a=|AF2|-|AF1|=2,故e=,故選D.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)橢圓的左、右焦點(diǎn)分別為,,右頂點(diǎn)為A,上頂點(diǎn)為B.已知=.
          (1)求橢圓的離心率;
          (2)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過點(diǎn),經(jīng)過點(diǎn)的直線與該圓相切與點(diǎn)M,=.求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分,(1)小問4分,(2)小問8分)已知為橢圓上兩動點(diǎn),分別為其左右焦點(diǎn),直線過點(diǎn),且不垂直于軸,的周長為,且橢圓的短軸長為
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)已知點(diǎn)為橢圓的左端點(diǎn),連接并延長交直線于點(diǎn).求證:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
          第3小題滿分6分.
          已知橢圓過點(diǎn),兩焦點(diǎn)為是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線與橢圓交于兩不同點(diǎn).
          (1)求橢圓C的方程;       
          (2) 當(dāng)時,求面積的最大值;
          (3) 若直線、、的斜率依次成等比數(shù)列,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若直線mx+ny=4與⊙O:x2+y2=4沒有交點(diǎn),則過點(diǎn)P(m,n)的直線與橢圓=1的交點(diǎn)個數(shù)是(  )
          A.至多為1B.2C.1D.0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          以橢圓的長軸端點(diǎn)為焦點(diǎn)、以橢圓焦點(diǎn)為頂點(diǎn)的雙曲線方程為 (  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知拋物線的準(zhǔn)線與橢圓相切,且該切點(diǎn)與橢圓的兩焦點(diǎn)構(gòu)成的三角形面積為2,則橢圓的離心率是(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓經(jīng)過點(diǎn),其離心率
          (1)求橢圓的方程;
          (2)過坐標(biāo)原點(diǎn)作不與坐標(biāo)軸重合的直線交橢圓兩點(diǎn),過軸的垂線,垂足為,連接并延長交橢圓于點(diǎn),試判斷隨著的轉(zhuǎn)動,直線的斜率的乘積是否為定值?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,設(shè)P是圓上的動點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

          (1)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
          (2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

          查看答案和解析>>

          同步練習(xí)冊答案