日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC的三角A,B,C對應(yīng)的邊分別為a,b,c,且三邊a,b,c成等差數(shù)列,b=4,C=2A.
          (1)求cosA;
          (2)求△ABC的面積.
          考點(diǎn):正弦定理,三角函數(shù)中的恒等變換應(yīng)用
          專題:計(jì)算題,解三角形
          分析:(1)利用a,b,c成等差數(shù)列,可得a+c=2b,從而可得sinA+sinC=2sinB,進(jìn)一步可得(4cosA-3)(2cosA+1)=0,即可得出結(jié)論;
          (2)由正弦定理可得a=
          bsinA
          sinB
          ,再求出c,利用S△ABC=
          1
          2
          bcsinA,可求△ABC的面積.
          解答: 解:(1)∵a,b,c成等差數(shù)列,
          ∴a+c=2b,
          ∴sinA+sinC=2sinB,
          ∵C=2A,
          ∴sinA+sin2A=2sin3A,
          ∴sinA+2sinAcosA=2(3sinA-4sin3A),
          ∴(4cosA-3)(2cosA+1)=0,
          ∴cosA=
          3
          4
          (負(fù)值舍去);
          (2)由正弦定理可得a=
          bsinA
          sinB
          =
          b
          3-4sin2A
          =
          16
          5

          ∴c=8-
          16
          5
          =
          24
          5
          ,
          ∴S△ABC=
          1
          2
          bcsinA=
          1
          2
          •4•
          24
          5
          7
          4
          =
          12
          7
          5
          點(diǎn)評:本題考查正弦定理、余弦定理的運(yùn)用,考查三角形面積的計(jì)算,正確運(yùn)用正弦定理、余弦定理是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若不等式|x-a|+
          1
          x
          1
          2
          在x>0上恒成立,則實(shí)數(shù)a的取值范圍是(  )
          A、a≤2B、a<2
          C、a>2D、a≥2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某人參加一檔綜藝節(jié)目,需依次回答6道題闖關(guān),每關(guān)答一題,若回答正確,則他可進(jìn)入下一關(guān);若回答錯(cuò)誤,則他離開此節(jié)目,按規(guī)定,他有一次求助親友團(tuán)的機(jī)會(huì),若回答正確,也被視為答案正確,否則視為錯(cuò)誤,6道題目隨機(jī)排列,已知他能答出其中3題,親友團(tuán)能答對其余3題中的2題,設(shè)他能闖過的關(guān)數(shù)為隨機(jī)變量X.
          (Ⅰ)求他恰好闖過一關(guān)的概率;
          (Ⅱ)求X的分布列與期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x-alnx,g(x)=-
          1+a
          x
          (a∈R)

          (Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
          (Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
          (Ⅲ)若在[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a、b、c是正數(shù),求證:
          2a+1
          +
          2b+1
          +
          2c+1
          <a+b+c+3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某超市為了促銷,舉行消費(fèi)抽獎(jiǎng)活動(dòng),消費(fèi)者可從一個(gè)裝有1個(gè)紅球,2個(gè)黃球,3個(gè)白球的口袋中按規(guī)定不放回摸球,摸中紅球獲獎(jiǎng)15元,黃球獲獎(jiǎng)10元,白球獲獎(jiǎng)5元,獎(jiǎng)金進(jìn)行累加.抽獎(jiǎng)規(guī)則如下:消費(fèi)金額每滿100元可摸1個(gè)球,最多可摸3個(gè)球.消費(fèi)者甲購買了238元的商品,準(zhǔn)備參加抽獎(jiǎng).
          (Ⅰ)求甲摸出的球中恰有一個(gè)是紅球的概率;
          (Ⅱ)求甲獲得20元獎(jiǎng)金的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=cos2x+sinx
          (1)求f(x)的值域;
          (2)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(B)=1,b=1,c=
          3
          ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a,b為實(shí)數(shù),且a+b>0,試證明
          a
          b2
          +
          b
          a2
          1
          a
          +
          1
          b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知x,y滿足約束條件
          x-y+6≥0
          x≤3
          x+y+k≥0
          ,且z=2x+4y的最小值為6,則常數(shù)k=
           

          查看答案和解析>>

          同步練習(xí)冊答案