日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5
          (Ⅰ)求{an}的通項公式;
          (Ⅱ)求和:b1+b3+b5+…+b2n1

          【答案】解:(Ⅰ)等差數(shù)列{an},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,
          所以{an}的通項公式:an=1+(n﹣1)×2=2n﹣1.
          (Ⅱ)由(Ⅰ)可得a5=a1+4d=9,
          等比數(shù)列{bn}滿足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比數(shù)列奇數(shù)項符號相同).
          ∴q2=3,
          {b2n1}是等比數(shù)列,公比為3,首項為1.
          b1+b3+b5+…+b2n1= =
          【解析】(Ⅰ)利用已知條件求出等差數(shù)列的公差,然后求{an}的通項公式;
          (Ⅱ)利用已知條件求出公比,然后求解數(shù)列的和即可.
          【考點精析】本題主要考查了數(shù)列的前n項和的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在科普知識競賽前的培訓(xùn)活動中,將甲、乙兩名學(xué)生的6次培訓(xùn)成績(百分制)制成如圖所示的莖葉圖:

          (1)若從甲、乙兩名學(xué)生中選擇1人參加該知識競賽,你會選哪位?請運用統(tǒng)計學(xué)的知識說明理由;
          (2)若從學(xué)生甲的6次培訓(xùn)成績中隨機(jī)選擇2個,記選到的分?jǐn)?shù)超過87分的個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)圓的圓心在軸上,并且過兩點.

          (1)求圓的方程;

          (2)設(shè)直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P-ABC中,PA底面ABC,ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.

          (1)求證:PA平面QBC;

          (2)若PQ平面QBC,求銳二面角Q-PB-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.

          求證:CD⊥平面PAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCDA1B1C1D1中,EF分別是BB1,CD的中點.

          (1)證明:平面AED平面A1FD1;

          (2)AE上求一點M,使得A1M平面DAE

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 滿足| |=1,| |=2,則| + |+| |的最小值是 , 最大值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在.

          1)若圓心也在直線上,過點作圓的切線,求切線方程;

          2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案