日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)f(x)="xln" x–ax2+(2a–1)xaR.

          )令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

          )已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

          【答案】)當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (

          【解析】試題分析:()先求出,然后討論當(dāng)時,當(dāng)時的兩種情況即得.

          )分以下情況討論:當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,綜合即得.

          試題解析:()由

          可得

          ,

          當(dāng)時,

          時, ,函數(shù)單調(diào)遞增;

          當(dāng)時,

          時, ,函數(shù)單調(diào)遞增,

          時, ,函數(shù)單調(diào)遞減.

          所以當(dāng)時, 單調(diào)遞增區(qū)間為;

          當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

          )由()知, .

          當(dāng)時, , 單調(diào)遞減.

          所以當(dāng)時, , 單調(diào)遞減.

          當(dāng)時, , 單調(diào)遞增.

          所以x=1處取得極小值,不合題意.

          當(dāng)時, ,由()內(nèi)單調(diào)遞增,

          可得當(dāng)當(dāng)時, , 時,

          所以(0,1)內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

          所以x=1處取得極小值,不合題意.

          當(dāng)時,即時, (0,1)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

          所以當(dāng)時, , 單調(diào)遞減,不合題意.

          當(dāng)時,即,當(dāng)時, , 單調(diào)遞增,

          當(dāng)時, , 單調(diào)遞減,

          所以f(x)x=1處取得極大值,合題意.

          綜上可知,實數(shù)a的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xax+(a1),。

          1)討論函數(shù)的單調(diào)性;

          2)證明:若,則對任意xx,xx,有。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx=sin+cos,x∈R

          1)求函數(shù)fx)的最小正周期,并求函數(shù)fx)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;

          2)函數(shù)fx=sinxx∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)fx)的圖象.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}是由非負整數(shù)組成的無窮數(shù)列,該數(shù)列前n項的最大值記為An , 第n項之后各項an+1 , an+2…的最小值記為Bn , dn=An﹣Bn
          (1)若{an}為2,1,4,3,2,1,4,3…,是一個周期為4的數(shù)列(即對任意n∈N* , an+4=an),寫出d1 , d2 , d3 , d4的值;
          (2)設(shè)d是非負整數(shù),證明:dn=﹣d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
          (3)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項只能是1或者2,且有無窮多項為1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,且過點.設(shè)為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連結(jié)并延長,分別交橢圓于兩點.

          (1)求橢圓的標準方程;

          (2)設(shè)直線的斜率分別為,是否存在實數(shù),使得?若存在,求出實數(shù)的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位實行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為 的棱異面,則a的取值范圍是(
          A.(0,
          B.(0,
          C.(1,
          D.(1,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在五面體ABCDEF中,點O是矩形ABCD的對角線的交點,面CDE是等邊三角形,棱

          (1)證明FO∥平面CDE;

          (2)設(shè)BC=CD證明EO⊥平面CDE。

          查看答案和解析>>

          同步練習(xí)冊答案