【題目】已知以為焦點(diǎn)的拋物線(xiàn)
過(guò)點(diǎn)
,直線(xiàn)
與
交于
,
兩點(diǎn),
為
中點(diǎn),且
.
(1)當(dāng)時(shí),求點(diǎn)
的坐標(biāo);
(2)當(dāng)時(shí),求直線(xiàn)
的方程.
【答案】(1);(2)
.
【解析】
(1)將代入拋物線(xiàn)方程,求得
的值,根據(jù)向量的坐標(biāo)運(yùn)算,即可求得
的值;
(2)方法一:根據(jù)向量的坐標(biāo)運(yùn)算,求得的縱坐標(biāo),利用拋物線(xiàn)的“點(diǎn)差法”求得直線(xiàn)的斜率,代入拋物線(xiàn)方程,利用韋達(dá)定理及向量的坐標(biāo)運(yùn)算,即可求得直線(xiàn)
的方程;
方法二:設(shè)直線(xiàn)的方程,代入拋物線(xiàn)方程,利用韋達(dá)定理,中點(diǎn)坐標(biāo)公式,及向量的坐標(biāo)運(yùn)算,即可求得直線(xiàn)
的方程.
解:(1)將代入拋物線(xiàn)
方程,得
,
所以的方程為
,焦點(diǎn)
,
設(shè),
,當(dāng)
時(shí),
,可得
.
(2)方法一:設(shè),
,
,
,
,
,
由.可得
,
,
,所以
,
所以直線(xiàn)的斜率存在且斜率
,
設(shè)直線(xiàn)的方程為
,聯(lián)立
,消去
,
整理得,
△,可得
,
則,
,
,
所以,
解得,
(舍
,
所以直線(xiàn)的方程為
.
方法二:設(shè)直線(xiàn)的方程為
,
設(shè),
,
,
,
,
,
聯(lián)立方程組,消去
,
整理得,△
,
則,
,
則,
則,
,由
.
得,
,
,所以
,
所以直線(xiàn)的方程為
,
由△,可得
,
由,得
,
所以,
解得或
,(舍去)
所以直線(xiàn)的方程為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對(duì)于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機(jī)抽取40人進(jìn)行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對(duì)于
這種口罩了解的占
,其中45歲以上(含45歲)的人數(shù)占
.
(1)將答題卡上的列聯(lián)表補(bǔ)充完整;
(2)判斷是否有的把握認(rèn)為對(duì)
這種口罩的了解與否與年齡有關(guān).
參考公式:,其中
.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)“忽如一夜春風(fēng)來(lái)”,遍布了一二線(xiàn)城市的大街小巷.為了解共享單車(chē)在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車(chē)情況與年齡有關(guān)?
(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,
求這5人中經(jīng)常使用、偶爾或不用共享單車(chē)的人數(shù);
從這5人中,在隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車(chē)的概率.
參考公式: ,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),討論
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂(lè)家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬(wàn)字的著述中以《樂(lè)律全書(shū)》最為著名,在西方人眼中他是大百科全書(shū)式的學(xué)者王子。他對(duì)文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國(guó)的鍵盤(pán)樂(lè)器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”。“十二平均律”是指一個(gè)八度有13個(gè)音,相鄰兩個(gè)音之間的頻率之比相等,且最后一個(gè)音頻率是最初那個(gè)音頻率的2倍,設(shè)第二個(gè)音的頻率為,第八個(gè)音的頻率為
,則
等于( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長(zhǎng)方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①;②
;③
;④
;⑤λ=3
(1)求直線(xiàn)AS與平面ABCD所成角的正弦值;
(2)若線(xiàn)段CD上能找到點(diǎn)E,滿(mǎn)足AE⊥SE,則λ可能的取值有幾種情況?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,當(dāng)λ為所有可能情況的最大值時(shí),線(xiàn)段CD上滿(mǎn)足AE⊥SE的點(diǎn)有兩個(gè),分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和
,
是等差數(shù)列,且
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中裝有12個(gè)球,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球.從中隨機(jī)取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為
的直線(xiàn)交拋物線(xiàn)于
兩點(diǎn),且
.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),
為拋物線(xiàn)上一點(diǎn),若
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com